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Vojkan Mihajlović1, Georgina Ramı́rez2, Arjen P. de Vries2, Djoerd Hiemstra1,
and Henk Ernst Blok1

1 University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands

{v.mihajlovic, d.hiemstra, h.e.blok}@utwente.nl
2 Centre for Mathematics and Computer Science,

P.O. Box 94079, 1090GB Amsterdam, The Netherlands
{georgina, arjen}@cwi.nl

Abstract. This paper discusses our participation in INEX using the
TIJAH XML-IR system. We have enriched the TIJAH system, which
follows a standard layered database architecture, with several new fea-
tures. An extensible conceptual level processing unit has been added
to the system. The algebra on the logical level and the implementation
on the physical level have been extended to support phrase search and
structural relevance feedback. The conceptual processing unit is capable
of rewriting NEXI content-only and content-and-structure queries into
the internal form, based on the retrieval model parameter specification,
that is either predefined or based on relevance feedback. Relevance feed-
back parameters are produced based on the data fusion of result element
score values and sizes, and relevance assessments. The introduction of
new operators supporting phrase search in score region algebra on the
logical level is discussed in the paper, as well as their implementation on
the physical level using the pre-post numbering scheme. The framework
for structural relevance feedback is also explained in the paper. We con-
clude with a preliminary analysis of the system performance based on
INEX 2004 runs.

1 Introduction

In our research for INEX 2004 we extended the TIJAH system to support
more advanced IR techniques, namely phrase search and relevance feedback.
The TIJAH system follows a layered database architecture, consisting of a con-
ceptual, a logical, and a physical level. Each level has been built upon a different
data model and has its own operators. The top level is based on the NEXI query
language [10]. A NEXI query is first translated (at the conceptual level) into an
internal query representation that closely resembles the NEXI query language,
but enriched with some additional operators. The translation process is based on
the retrieval model specification. The conceptual query is then transformed into
a score region algebra (SRA) query plan [7] on the logical level of the TIJAH



system. SRA views XML as a collection of regions and not as a tree-like struc-
ture, and operators in the SRA are based on the region containment relation
and on region frequency counts to support vague containment conditions. The
logical query plan is transformed into the physical plan (via Monet interpreter
language - MIL) that is executed in the MonetDB database kernel [1].

The TIJAH system that we use for INEX 2004 is an extended version of
the TIJAH system used in 2003 [6]. Each level of the TIJAH database system
has been extended to support phrase search and relevance feedback. Thus, the
conceptual level is capable of handling phrases and supports relevance feedback
specification. New operators have been introduced into the score region algebra
to support phrase modeling and relevance feedback specification and the phys-
ical level has been enriched with new functions that implement phrase search.
Furthermore, a fully automatic query rewriting unit has been developed at the
conceptual level capable of transforming original NEXI queries into proper con-
ceptual queries based either on the retrieval model specification or on the rele-
vance feedback data.

The retrieval model used for the NEXI about function is essentially the same
as the one used for INEX 2003 [6]. We calculate the relevance of a document
component (i.e., XML element), following the idea of independence between
the relevance on exhaustivity and the relevance on specificity. The relevance on
exhaustivity is estimated using the language modeling approach to information
retrieval [4]. The phrase model is kept orthogonal to the unigram language model
for single terms, similarly to [9], and we used variants of the n-gram (n > 1)
language model to see if and in what degree phrases can contribute to the TIJAH
system effectiveness. The relevance on specificity is assumed to be related to the
component length (e.g., following a log-normal distribution).

This paper presents our approaches for two out of five tracks defined for
INEX 2004, namely the ad-hoc track and the relevance feedback track. For the
ad-hoc track, we developed approaches for both the content-only (CO) and the
vague content-and-structure (VCAS) subtasks. Different models have been im-
plemented in the TIJAH system for these subtasks. Moreover, the TIJAH system
supports the specification of relevance feedback parameters and a simple model
for relevance feedback on structure has been implemented in our system.

The following section gives a global overview of the TIJAH system archi-
tecture. Section 3 describes the capabilities of a conceptual level of our system
performing different NEXI query rewriting and expansions. Section 4 specifies
an extension of score region algebra for phrase handling and explains how these
expressions are mapped into efficient operations on the physical level. Section 5
describes the incorporation of relevance feedback on structure in our system.
The paper concludes with a discussion of the experiments performed with the
TIJAH system for the two INEX ad-hoc search tasks (CO and CAS) and for the
INEX relevance-feedback task.



2 TIJAH System Architecture

The TIJAH XML-IR system follows a traditional three-level database architec-
ture consisting of a conceptual, logical, and physical level. Although the concept
has been well known in the database field for about thirty years, we introduced
some modifications in the architecture to bridge the gap between traditional
DBMSs and IR systems.

2.1 Conceptual level

As a base for the conceptual level we used the Narrowed Extended XPath (NEXI)
query language [10] as proposed by the INEX community in 2003. The NEXI
query language supports only a subset of the XPath syntax and extends XPath
with a special about function that ranks XML elements by their estimated rel-
evance to a textual query. As such, the invocation of the about function can be
regarded as the instantiation of a retrieval model.

Throughout the paper we will use two NEXI examples, one taken from the
INEX CAS topic 149:

//article[about(.//(abs|kwd), "genetic algorithm")]

//bdy//sec[about(., simulated annealing)]

and the other from INEX CO topic 166:

+"tree edit distance" +XML -image

During query processing a (conceptual) NEXI query language expression is
encoded into an internal representation that closely resembles the original query
in its structure, and all manipulations are done on this internal representation.
As a result of the processing on the conceptual level we obtain a conceptual
query representation.

2.2 Logical level

The difference on the logical level of traditional DBMSs and our system is in
that we enhanced it with an algebra that takes into account the specific (i.e.,
nested) structure of the modeled data, i.e., XML in our case, to enable high
level reasoning about the query specification and algebraic optimization. Since
the algebra supports region score manipulation and ranked retrieval we named
it score region algebra (SRA).

The basic score region algebra operators that involve score manipulations
are depicted in Table 13. We assume that the default value for score attribute
is 1. Note that the probabilistic containment operators =p, 6=p, I, and J copy
the region start, end, type, and name attribute values from the left operand
region set (R1) to the result region set, while the score attribute of the result

3 We used a slightly different notation than in [6]. For more extensive coverage of our
score region algebra we refer to [7].



Table 1. Region algebra operators for score manipulation.

Operator Operator definition

σt=type,n=name(R) {r|r ∈ R ∧ t = type ∧ n = name}
R1 =p R2 {r|r1 ∈ R1 ∧ (s, e, n, t) := (s1, e1, n1, t1) ∧ p := p1 × f=(r1, R2)}
R1 6=p R2 {r|r1 ∈ R1 ∧ (s, e, n, t) := (s1, e1, n1, t1) ∧ p := p1 × f6=(r1, R2)}
R1 I R2 {r|r1 ∈ R1 ∧ (s, e, n, t) := (s1, e1, n1, t1) ∧ p := p1 × fI(r1, R2)}
R1 J R2 {r|r1 ∈ R1 ∧ (s, e, n, t) := (s1, e1, n1, t1) ∧ p := p1 × fJ(r1, R2)}
R1 up R2 {r|r1 ∈ R1 ∧ r2 ∈ R2 ∧ (s1, e1, n1, t1) = (s2, e2, n2, t2)

∧(s, e, n, t) := (s1, e1, n1, t1) ∧ p := p1 ⊗ p2}
R1 tp R2 {r|r1 ∈ R1 ∧ r2 ∈ R2 ∧ ((s, e, n, t) := (s1, e1, n1, t1)

∨(s, e, n, t) := (s2, e2, n2, t2)) ∧ p := p1 ⊕ p2}

set (p) gets its value based on the containment relation among regions in the
left and regions in the right operand as well as their respective score values. The
definitions of the set-like operators (up and tp) are similar to the definitions
of basic set intersection and set union operators, i.e., the result region start,
end, type and name are obtained the same way as for set intersection and union
operators, except that the result score value for regions is defined based on the
score values of regions in the left and right operand region set.

In the definition of score operators we introduced four abstract scoring func-
tions: f=, f6=, fI, and fJ, as well as two abstract operators: ⊗ and ⊕, that define
the retrieval model. For the ⊕ operator we assume that there exists a default
value for the score (denoted with d), and in case the region r1 is not present in
the region set R2 the score is computed as p = p1⊕ d and in case the region r2

is not present in the region set R1 the score is computed as p = d⊕ p2.
The functions f=, f6=, fI, and fJ, applied to a region r1 and a region set

R2, result in the numeric value that takes into account the score values of all
regions r2 (∈ R2) and the numeric value that reflects the structural relation
between the region r1 and the region set R2. The abstract ⊗ operator specifies
how scores are combined in an and expression, while the ⊕ operator defines the
score combination in an or expression inside the NEXI predicate. The exact
instantiation of these functions and operators is done on the physical level as
can be seen in the next section.

2.3 Physical level

The SRA is defined as an XML specific logical algebra and can be implemented
easily with relational operators [6, 11, 2]. Since we used the MonetDB on the
physical level the last step on the logical level of the TIJAH system is a trans-
lation to Monet Interpreter Language (MIL). The MIL query plan is executed
using MIL primitives that define the manipulation over Monet binary tables
(BATs) [1].

The physical level is based on a pre-post numbering scheme [3] and the con-
tainment join operators (1= and 1<) introduced in [6]. In the specification of
our retrieval model we first introduce three auxiliary functions at the physical



level. These functions are used to compute the term frequency - tf (r ,R), the col-
lection frequency - cf (R) and the length prior - lp(r). Variable λ represents the
smoothing parameter for the inclusion of background statistics, µ is the mean
value of the logarithmic distribution of the desired size for the element, and ρ is
the variance (in our case set to 1) for the log-normal prior. These auxiliary func-
tions can be implemented using two physical operators: a size operator size(r)
that returns the size of a selected region r, and a count operator |R| that returns
the number of regions in a region set R.

Function tf (r ,R) computes the term frequency of a term region set R, i.e., a
set containing only regions representing a single term, in a region r, while func-
tion cf (tm,R) computes the collection frequency of a term tm in the collection.
They are computed as:

tf (r ,R) =
|R 1< r |
size(r)

, cf (term,R) =
|σt=term,n=tm(C)|

size(Root)
(1)

where tm is the name of a region r ∈ R, C denotes the set of all regions in XML
collection, and Root represents the region that is not contained by any other
region in the collection (i.e., the region corresponding to the top node of the
entire XML tree).

To define the length prior of the region r we used either the size of the
element: lp(r) = size(r), the standard element prior: lp(r) = log(size(r)), or the
log-normal distribution:

lp(r) =
e−((log(size(r))−µ)2/2ρ2)

size(r)ρ
√

2π
(2)

Although in our framework arbitrary implementations of abstract functions
can be introduced on the physical level, for INEX 2004 we followed the language
model [4] and the conclusion drawn from numerous experiments last year [6]. The
abstract scoring functions defined in our region algebra, f=(r, R) and f6=(r, R),
implement the about function specified in NEXI, while fI(r, R) and fJ(r, R)
specify the score propagation in nested regions:

f=(r, R) = λtf(r, R)+(1−λ)cf(tm, R), f6=(r, R) = 1−(λtf(r, R)+(1−λ)cf(tm, R)),

fI(r, R) =

P
ri∈r1=R(size(ri) ∗ pi)P

ri∈r1=R size(ri)
, fJ(r, R) =

X
ri∈r1<R

pi (3)

In this paper we take the simple approach for the score combination operators
where ⊗ is implemented as a product of two score values, and ⊕ as the sum of
scores (with the default value d = 1), as it shows good behavior for retrieval.

3 Query rewriting

Upgrading the TIJAH system used previous year for INEX [6], we developed a
fully automatic approach for translating NEXI queries, first into internal con-
ceptual representation and later into logical algebra. The structure of the con-
ceptual query translator is depicted in Figure 1. The conceptual level of the
TIJAH system consists of three processing units: the query preprocessor, the
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Fig. 1. The conceptual level of the TIJAH system.

query processor, and the query rewriter; and three user modeling units: the re-
trieval model repository, the relevance feedback repository, and the equivalence
classes repository4.

The retrieval model repository and relevance feedback repository form the
input to the preprocessing unit. How the data from the repository is interpreted
depends on a specification in the user modeling unit. The retrieval model repos-
itory in the TIJAH system currently only stores the parameters of a retrieval
model, i.e., the smoothing parameter λ for the language model used for re-
trieval, and the desired size of the retrieved element for estimating the relevance
on specificity.

Handling phrases and modifiers The query preprocessing unit rewrites
NEXI queries based on a user specification on handling phrases and modifiers.
Thus, users can specify whether phrases should be considered as phrases or as
a set of terms in the query, and whether term and phrase modifiers (’+’, and
’−’) should be considered during the query execution. The result of our example
CAS query with phrases can be seen in Figure 2 as CAS query 1.

Stop word removal and stemming The standard IR query processing
consisting of query stop word removal and stemming is done by the processing
unit. We used the standard Porter stemmer and a publicly available stop word
list consisting of 429 stop words. Stemming and stop word removal are applied
based on a user specification (in the user modeling unit). In Figure 2 CAS query

4 The equivalence classes repository represents a repository that should support re-
trieval from heterogeneous collections and is still not fully supported in the TIJAH
system.



CAS queries:
1. ROOT//article[ABOUT(.//(abs|kwd),genetic algorithm

"genetic algorithm")]//bdy//sec[ABOUT(.,simulated annealing)]

2. ROOT//article[ABOUT(.//(abs|kwd),genet algorithm "genet algorithm")]

//bdy//sec[ABOUT(.,simul anneal)]

3. ROOT//article[ABOUT(.//(abs|kwd),genet algorithm "genet algorithm")

AND ABOUT(.,genet algorithm "genet algorithm")]

//bdy//sec[ABOUT(.,simul anneal)]

4. ROOT//article[ABOUT(.//(abs|kwd),genet algorithm "genet algorithm")

AND ABOUT(.,genet algorithm "genet algorithm")

AND ABOUT(.,simul anneal)]//bdy//sec[ABOUT(.,simul anneal)

AND ABOUT(.,genet algorithm "genet algorithm")]

CO queries:
1. ROOT//article//*[ABOUT(.,+tree +edit +distance +"tree edit distance"

+XML -image)]PRIOR

2. ROOT//article[ABOUT(.,+tree +edit +distance +"tree edit distance"

+XML -image)]//*[ABOUT(.,+tree +edit +distance

+"tree edit distance" +XML -image)]PRIOR

3. ROOT//journal[MATCH(tp,0.34)]//*[MATCH(sec,0.22) or MATCH(p,0.18)]

[ABOUT(.,+tree +edit +distance +"tree edit distance"

+XML -image)]PRIOR(856)

Fig. 2. The conceptual query representations generated from the NEXI queries.

2 depicts the outcome of the processing unit in case stemming would have been
performed.

Query expansion The last step in conceptual query processing is query
rewriting and expansion. The conceptual query rewriting unit distinguishes be-
tween NEXI content-only (CO) and content-and-structure (CAS) queries.

NEXI CO queries are transformed into CAS queries according to the user
specification. For instance, the CO query can be translated in two ways:

– we are looking for any relevant XML element in any of the articles in the
collection, including the articles themselves, as depicted in CO query 1 in
Figure 2, 5 or

– we are looking for any relevant element in an article (including article ele-
ments themselves) that is about the topic specified, as depicted in CO query
2 in Figure 2.

The PRIOR in the conceptual query representation denotes that we use the rel-
evance on specificity (i.e., result element size) in computing the final score of
XML elements. The default is a length prior while for the log-normal prior the
mean size should be specified (see CO example 3 in Figure 2).

Since NEXI CAS queries specify the element that should be retrieved as a re-
sult, query rewriting can only be about structural constraints in the about clause
and about term distribution in different about clauses. Therefore, we applied two
simple rules to enable elementary CAS query rewriting:
5 In the TIJAH system, //* is treated as descendant or self::node.



– relaxing the constraint that terms or phrases must be contained by the XML
elements specified in the structural part of the about clause, as depicted in
CAS query 36 in Figure 2;

– further relaxing the structural constraints and allowing that terms or phrases
in each subquery are also added to the other subqueries (similarly as we had
in the TIJAH 2003 approach [6]), as shown in Figure 2, CAS query 4.

4 Phrase Modeling

For phrase modeling we follow the ideas introduced by Song and Croft [9], where
authors individualized unigram and bigram language models and combined them
in an independent way. We slightly modified their approach and used two inter-
pretations:

– combination of n-gram LMs is modeled as an equally weighted sum:
P (t1, .., tn−1, tn|e) = P1(t1|e) + P2(t1, t2|e) + ... + Pn(t1, t2, ..., tn|e), and

– combination of n-gram LMs is modeled as a product:
P (t1, .., tn−1, tn|e) = P1(t1|e)× P2(t1, t2|e)× ...× Pn(t1, t2, ..., tn|e).

In our approach the expression Pi(t1, t2, ..., ti|e) gives the probability that the
XML element e contains the phrase “t1 t2 ... ti”.

To be able to model phrases in region algebra we had to extend SRA to
support phrase specification and more advanced score manipulation operators.
For such a purpose we introduced a complex selection operator and additional
containment operator defined in Table 2.

Table 2. Complex selection and containment operators.

Operator definitions

σt=type,n=name1 adj n=name2 adj ... adj n=namen(R) = {r|(r1 ∈ R ∧ r2 ∈ R ∧ t2 = t1 = type
∧ n1 = name1 ∧ n2 = name2 ∧ e1 = s2 − 1 ∧ (s, e, n, t, p) := (s1, e2, n2, adj, p2)) ∨ ... ∨
(r1 ∈ R ∧ r2 ∈ R ∧ ... ∧ rn ∈ R ∧ tn = ... = t2 = t1 = type ∧ n1 = name1 ∧ n2 = name2

∧ ... ∧ nn = namen ∧ e1 = s2 − 1 ∧ e2 = s3 − 1 ∧ ... ∧ en−1 = sn − 1
∧ (s, e, n, t, p) := (s1, en, nn, adj, pn))}

R1 =� R2 = {r|r1 ∈ R1 ∧ (s, e, n, t) := (s1, e1, n1, t1) ∧ p := p1 × f=�(r1, R2)}

The first operator makes a union of all adjacent sub-regions in the region
set that have the same type attribute. The name attributes of these new regions
take the names of the regions from the second operand, while their type is now
changed to adj. Following this approach and using xp as a shorthand for any
arbitrary SRA expression formed during the NEXI to SRA query translation,
phrase ‘̀texttttree edit distance” can be transformed into the following logical
expressions:

xp =� σt=term,n=′tree′ adj n=′edit′ adj n=′distance′(R)

6 Note that the stemming has been applied in the query processing.



Here, xp denotes an arbitrary SRA expression formed during the NEXI to SRA
query translation.

The operator =� defines how relevance scores from regions with distinct
region name attributes (i.e., regions with adjacent terms of different length)
are combined to form the resulting score value for regions in the left operand
(r1 ∈ R1). The definition of function f=� is similar to the definition of function
f= in Equation 3 except that it treats adjacent regions with different name
attributes in isolation and combines them based on the specifications of the
operators ⊗ and ⊕, i.e., multiplying or summing them, respectively.

Furthermore, the scaling operator (~) is introduced in the SRA to model
terms with and without modifier ’+’. The operator definition is as follows: R1 ~
num = {r|r1 ∈ R1∧(s, e, n, t) := (s1, e1, n1, t1)∧p := (p1 ∗num)}. This operator
scales down the terms (regions) that are not marked with ’+’ and, therefore,
considered not so important, and scales up terms (regions) marked with ’+’ that
are considered important terms. In our approach important terms are scaled
with a num value that is double the num value for not so important terms.

Based on the defined operators we can now translate the conceptual query
representation into the logical query plan. For example, if we consider the first
part of query 1 in Figure 2:

ROOT//article[ABOUT(.//(abs|kwd), genetic algorithm "genetic algorithm")]

we can express it in SRA as:
ARTICLE I ((((ABS tp KWD) =p GENETIC) ~ 0.5) up

(((ABS tp KWD) =p ALGORITHM)~ 0.5) up (((ABS tp KWD) =� GEN ALG)~ 0.5))

Here we used ABS instead of σt=entity,n=′abs′ , KWD instead of σt=entity,n=′kwd′ , GENETIC

instead of σt=term,n=′genetic′ , ALGORITHM instead of σt=term,n=′algorithm′ , and GEN ALG

instead of σt=term,n=′genetic′ adj n=′algoithm′ .

For the phrase modeling on the physical level we implemented two variants
of the function f=� , based on [9] and functions in Equation 1, as defined below:

f=�(r, R) =
Y
Ri

ηtf(r, Ri) + (1− η)cf(Ri) (4)

f=�(r, R) =
X
Ri

ηtf(r, Ri) + (1− η)cf(Ri) (5)

Here, Ri is a set of regions (ri) that have the same region name attribute (ni).
The sum and the product is defined over all sets Ri with different region names
in R. Parameter η is used to specify the influence of foreground and background
statistics for different adjacent regions in the region set.

5 Relevance feedback

Our approach for the relevance feedback track is based on the idea that knowl-
edge of relevant components provides implicit structural hints that may help
improve the performance of the content-oriented queries. We use a two-step pro-
cedure to implement this idea:



– First, we extract the structural relevance of the top-ranked elements accord-
ing to the relevance assessments provided by the test collection;

– Second, the content-oriented query is rewritten into a structured one and the
priors of the system are tuned based on the relevance feedback information.
Then, the new structured query is evaluated in the TIJAH system.

In the following subsections, we define these two steps and explain their
implementation in the TIJAH XML-IR system.

5.1 Extracting structural information

How to extract the structural relevance from the top relevant elements is a
difficult problem. The semantics of the relevance assessments should be analyzed
in depth to decide which type of structural hints should be extracted from the
different relevant components and to define what is the best interpretation for
the different relevance combinations.

In our first attempt to model the structural relevance of a query, we use the
journal and the XML tag name information from the top-ranked elements as
well as their relevance values. We also use the size of these elements to update
the length prior for the next iteration in the relevance feedback cycle. We believe
that with a good combination of these hints we can considerably improve the
performance of the content oriented results. In Section 6 we give a preliminary
analysis of the results of this approach.

The reminder of this section details how the structural information from the
top-ranked elements and the results from relevance assessments on exhaustivity
and specificity are used to rewrite the query for the next iteration in a relevance
feedback process.

Journal name The content of the INEX collection consists of eighteen dif-
ferent journals. Each of these journals contains articles discussing a different
computer science related field. We believe that when a component is assessed as
relevant for a given topic, the journal it belongs to will contain elements with a
similar content information. Therefore, we want to use this information to give
a prior to the elements that are contained in that journal.

As an example, consider the relevance assessments for this year. If we consider
only highly exhaustive and highly specific elements, marked with (3,3), we find
that most of the topics have less than 3 relevant journals. That means, that likely,
these are the journals that discuss the topic. Therefore, it is easy to imagine that
other elements from these journals will also contain relevant information for that
specific topic.

We decided to model the journal prior information according to the following
formula:

P (J) = a + b ·
P

r∈top20vJ Er

3 · |{r ∈ top20|Er > 0}| + (1− a− b) · |J w top20|
20

, (6)

where Er is the exhaustivity value of the relevant top 20 components (r ∈ top20)
that belong (v and w, respectively) to the journal J and a and b are weighting
parameters used to tune the importance of this information.



Note that we only use the exhaustivity information to get a prior for the
journal. We argue that if a component is somewhat exhaustive, it means that
the journal it belongs to is likely to be about the topic need, i.e., to contain the
desired information specified in the query (whatever the specificity for that com-
ponent is). We also reward the journals that have a higher number of elements
in the top 20 ranked elements (see the third part of the sum in the equation).

XML tag names The goal of using the element names for relevance feedback
is to push up in the ranked result list the kind of elements we already know to
be relevant for the topic (”make sense to be retrieved”) and to push down the
ones that are not.

For modeling the information on the XML tag names extracted from the top-
ranked elements (e), we use a similar approach as for the journals (Equation 6):

P (e) = a + b ·
P

r∈top20ve Er + Sr

6 · |{r ∈ top20|Er · Sr > 0}| + (1− a− b) · |e ∈ top20|
20

(7)

In this case, we also take into account the specificity scale (Sr) as it gives in-
formation on the size of the element: i.e, if the element was large enough or too
small for the information need.

Size We use the size information to tune the length prior of our retrieval
model for the next iteration. We believe that elements similar in length to those
that are assessed as relevant have a higher likelihood to be the ones that the
user is looking for. Nevertheless, it is not easy to combine the sizes of the top
components to estimate a desired size to be retrieved.

We decided to use the following formula to define the desired size given the
elements (r) in the top 20:

DesiredSize =

P
r∈top20

size(r)× SizeModifierrP
r∈top20

sgn(SizeModifierr)
, (8)

where SizeModifierr is defined as:

SizeModifierr =

8>>>><>>>>:
1 if (Er, Sr) ∈ {(2, 2), (3, 3)}

0 if (Er, Sr) ∈ {(1, 1), (0, 0)}

3−Er+Sr
3

otherwise

(9)

We based this formula on the assumption that very specific components that
are not very exhaustive (i.e., Sr > Er) are likely to be too small to answer the
information need and, on the other hand, highly exhaustive components that are
not very specific (i.e., Er > Sr) are likely to be too large as an answer. In case
there are no relevant elements in the 20 top-ranked elements, or the relevant
elements are marginally exhaustive and marginally specific, i.e., marked with
(1,1), we use a default value for desired size. We also experimented with the
following, simpler, estimation of the SizeModifierr than in Equation 9:

SizeModifierr =

8<:
0 if (Er, Sr) ∈ {(1, 1), (0, 0)}

Sr
Er

otherwise
(10)



5.2 Rewriting and evaluating the query

After the information extraction on the structural information of the relevant
elements and its fusion with the relevance assessments on exhaustivity and speci-
ficity, in the first step, the information is stored in the relevance feedback repos-
itory7. The information is used to rewrite the CO query and evaluate it in the
TIJAH system. Assuming that in the relevance feedback repository for topic 166
the journal name specification is tp with a relevance prior 0.34, element names
are sec and p with relevance prior values 0.22 and 0.18, respectively, and esti-
mated element size is 856, the conceptual query after rewriting will look like the
query given in Figure 2 as CO query plan 3. The MATCH(e name,imp) is used to
denote that the elements in the e name have the higher probability to be relevant
answers to a query than other elements, and the value imp gives their respective
relevance prior.

The MATCH expression in the conceptual query representation is translated
into a combination of a selection and scaling operators on the logical level. For
example, query excerpt:

xp[MATCH(sec,0.22) or MATCH(p,0.18)]

is expressed on the logical level as:
xp up ((σn=′sec′,t=entity(C) ~ 1.22) t (σn=′p′,t=entity(C) ~ 1.18))

where C is the collection of all regions (all XML elements and terms in the
collection). These operators are further translated into a physical query plan as
defined in the previous sections.

6 Experiments

In this section we give an overview of the experiments we did with the TIJAH
XML-IR system and present our results (official and additional runs) for the
ad-hoc retrieval task (CO and CAS) and the relevance feedback task.

6.1 INEX ad-hoc track

This year we used a completely new implementation on the physical level of our
system, we designed different experiments to evaluate which would be the best
parameters for the retrieval model as well as to check if the scenarios used in
previous years would produce the same performance on the new implementation.

CO queries For the CO task we designed two main experiments: The first
one evaluates the effect of supporting phrases in the TIJAH XML-IR system
as explained throughout the paper. Results of these runs are shown in Table 3.
The different columns show the different approaches used to model the phrase
7 Currently the computation and specification of these values are not completely in-

tegrated into the TIJAH system.



Table 3. CO experimentation runs: basic language model without length prior. Effects
of supporting phrases. The ’n-gram’ column indicates the kind of combination for the n-
gram LMs and the � column indicates the way the scores within a region are combined
for a final score (Equations 4 and 5).

Run λ n-gram � avg. MAP overlap

Rcompnophr 0.35 - - 0.0446 49.4%
Rcompphr1 0.35 product product 0.0437 51.1%

Rcompnophr 0.5 - - 0.0496 52.3%
Rcompphr2 0.5 product sum 0.0502 82.8%
Rcompphr3 0.5 sum sum 0.0470 82.1%

Table 4. Additional CO experimentation runs: Length priors

Run length prior Avg MAP overlap

Rcomp05 none 0.0496 52.3%
Rcompcut5 res > 5 0.0534 51.8%
Rcompcut10 res > 10 0.0578 53.2%
Rcompcut25 res > 25 0.0635 55.4%
Rcompcut50 res > 50 0.0645 57%
Rcomplogn log normal 0.0526 51.1%
Rcomplogs log standard 0.0985 73.6%

search (see Section 4 for details). According to the results, supporting phrase
search improved the retrieval performance in only one of the runs. Note that
this improvement is partially positive as the overlap increased considerably too.

The second experiment was designed to evaluate the effect of including a
length prior in the retrieval model. We defined several priors and applied them
to the best of our runs. The results are shown in Table 4. In the first four runs,
the length prior consists on removing from the result list the elements smaller
than a certain threshold. The last two runs use a log normal and a log standard
distribution to model the length prior. We can see that, whatever the prior is,
the performance of the original run improves. As we saw already in previous
years, a log standard distribution works best in our case, reaching a MAP of 1.4
in one of the metrics.

VCAS task For the VCAS task, we designed three different scenarios. The
first one, Rstrict treats the structural constraints of a query strictly and all the
result components must exactly match these structural constraints. The second
and the third one, Rrelax and Rall, implement the relaxations of the structural
constraints explained in Section 3, and shown in queries 3 and 4 in Figure 2. The
results of these runs are shown in Table 5. Even if the improvement for the first
relaxation (second row) is not significant, we can see in the precision and recall
graphs that the relaxation of the structural constraints leads to better precision
for this run. Contrary to last year, the second relaxation by using all the terms
in all the about clauses did not performed as expected. Further analysis should



Table 5. Official VCAS experiment runs. Note that results in Rall have been modified
due to an implementation error in the submitted ones

Run Avg MAP overlap

Rstrict 0.0624 22.8%
Rrelax 0.0694 24.3%
Rall 0.0588 23.9%

determine if this is just an effect of the different topics for this year or if, in
general, the relaxation is not appropriate for our purposes.

6.2 INEX relevance-feedback track

The aim of the experiments submitted for the relevance feedback task is to
identify which combination of the different structural and size information works
better. The MAPs obtained with the different combinations experimented and
their results are shown in Table 6.

Table 6. Official Relevance Feedback runs. Note that baseline runs are the result of
removing the descendants of the top 20 elements from the original CO runs. Relevance
feedback is applied on the residual collections of these runs, after freezing the top 20
elements. S1 and S2 refer to the size information extracted using Equations 9 and 10,
respectively, J refers to journal information and XT to XML tag information.

baseline S1 S1+J S1+XT S2 S2+J J S1+J+XT XT XT+J

0.0405 0.0406 0.0416 0.0406

0.0431 0.0429 0.0448 0.0450

0.0456 0.0482 0.0486 0.0468

The results show that none of the combinations improves significantly the
performance of our system. Further experimentation is required to see whether
different values for the parameters of the formulas presented will give a better
performance or some other interpretation of the relevance assessments should be
done.

7 Conclusions and Future Work

Our participation in INEX is characterized by applying a fully systematic ap-
proach able to support different retrieval tasks identified as ad-hoc tasks (CO
and CAS) with simple user modeling and relevance feedback. We investigated
the influence of phrases in the retrieval model with respect to the retrieval ef-
fectiveness. Furthermore, we experimented with straightforward approaches to
(blind) structural relevance feedback. Future research includes more extensive ex-
perimenting in the area of phrase search and relevance feedback, applying new
models for incorporating different aspects of relevance feedback information, and



taking more advanced methods for phrase search, by adapting IR approaches
such as classifier-thing bigrams [5], by using the WWW as N-gram training data
[12], by using vocabulary clustering [8], etc., to XML phrase modeling. Finally,
we aim to improve the efficiency of the system on, both memory and CPU wise,
using rewriting and optimization rules on the logical level as well as by applying
horizontal fragmentation and encoding of the data into more compact structures
on the physical level.
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