
The TIJAH XML-IR system at INEX 2003

Johan List1 Vojkan Mihajlovic2 Arjen P. de Vries1 Georgina Ramı́rez1

Djoerd Hiemstra2

1CWI
P.O. Box 94079

1090GB Amsterdam
The Netherlands

{jalist, arjen, georgina}@cwi.nl

2CTIT
P.O. Box 217

7500 AE Enschede
The Netherlands

{vojkan,hiemstra}@cs.utwente.nl

ABSTRACT
This paper discusses our participation in INEX (the Initia-
tive for the Evaluation of XML Retrieval) using the TIJAH
XML-IR system. TIJAH’s system design follows a ‘stan-
dard’ layered database architecture, carefully separating the
conceptual, logical and physical levels. At the conceptual
level, we classify the INEX XPath-based query expressions
into three different query patterns. For each pattern, we
present its mapping into a query execution strategy. The
logical layer exploits probabilistic region algebra as the basis
for query processing. We discuss the region operators used
to select and manipulate XML document components. The
logical algebra expressions are mapped into efficient rela-
tional algebra expressions over a physical representation of
the XML document collection using the ‘pre-post numbering
scheme’. The paper concludes with a preliminary analysis
of the evaluation results of the submitted runs.

1. INTRODUCTION
This paper describes our research for INEX 2003 (the Initia-
tive for the Evaluation of XML Retrieval). We participated
with the TIJAH XML-IR retrieval system, a research pro-
totype built on top of the MonetDB database kernel [1].
Key feature of the TIJAH system is its layered design, fol-
lowing the basic system architecture of relational database
management systems.

Traditional information retrieval systems represent a docu-
ment as a ‘bag-of-words’. Inverted file structures provide the
basis for implementing a retrieval system for such ‘flat’ doc-
uments. In the case of structured documents however, we
think designing the retrieval system following ‘the database
approach’ is best to keep the more complex data represen-
tation manageable.

The main characteristic of the database approach is a strong
separation between conceptual, logical and physical levels,
and the usage of different data models and query languages
at each of those levels [20]. In relational database systems, a
significant benefit of this data abstraction (through the sep-
aration between the levels in database design) is to enable
query optimization. A SQL query (a ‘calculus expression’)
at the conceptual level is first translated into relational al-
gebra. The algebraic version used at the logical level is then
rewritten by the query optimizer into an efficient physical
query plan. The physical algebra exploits techniques like
hashing and sorting to improve efficiency [8].

For XML-IR systems, following this separation in layers
gives another, additional advantage: by choosing the ap-
propriate level of abstraction for the logical level, the devel-
opment of probabilistic techniques handling structural in-
formation is simplified, and kept orthogonal to the rest of
the system design. Section 3 details our approach, based on
a probabilistic extension of text region algebras.

The paper is organized along the layers of the TIJAH sys-
tem design. The following Section describes the query lan-
guage used at the conceptual level, identifies three patterns
in the INEX topic set, and explains how the language mod-
eling approach to information retrieval is used for the about
operator. Section 3 presents a probabilistic region algebra
for expressing the three query patterns. Section 4 explains
how the algebraic expressions are mapped into efficient re-
lational algebra expressions over a physical representation
of the XML document collection using the ‘pre-post num-
bering scheme’. We conclude with a discussion of the ex-
periments performed with our approach for the three INEX
search tasks.

2. CONCEPTUAL LEVEL
For the conceptual level, we used the INEX query language,
as proposed by the INEX Initiative in 2002. The INEX
query language extends XPath with a special about function,
ranking XML elements by their estimated relevance to a
textual query. As such, the invocation of the about function
can be regarded as the instantiation of a retrieval model.

The retrieval model used for the about function is essentially
the same as that used at INEX 2002 [12, 14]. We calculate
the probability of complete relevance of a document com-
ponent assuming independence between the probability of
relevance on exhaustivity and the probability of relevance
on specificity.

The probability of relevance on exhaustivity, P (RE), is es-
timated using the language modeling approach to informa-
tion retrieval [11]. Instead of document frequency, we have
used collection frequencies for the background model. The
probability of relevance on specificity, P (RS), is assumed
to be directly related to the component length (following a
log-normal distribution). Its steep slope at the start dis-
counts the likelihood that very short document components
are relevant. Its long tail reflects that we do not expect long
document components to be focused on the topic of request



either.

The language model as used by our system disregards struc-
ture within a document component, i.e., the model treats a
document component as a ‘flat-text’ document. This model
property, and an informal inspection of the INEX 2003 topic
list, led us to use only a subset of possible location step axes
within an about function call; we only used the descendant-
or-self::qname location step axis. Allowing other axes, like
sibling::qname or following::qname requires correct proba-
bilistic modeling for estimating probabilities in the language
model, which our model did not offer at the time of evalua-
tion.

Table 1: SCAS and VCAS pattern set. Note that
xp, xp2, axp, axp1 and axp2 are location steps, and
’t/p’ denotes any set of terms or phrases to search
for.
Pattern Pattern definition

P1 xp[about(axp, ’t/p’)]

P2 xp[about(axp1, ’t1/p1’) AND about(axp2, ’t2/p2’)]

xp[about(axp1, ’t1/p1’) OR about(axp2, ’t2/p2’)]

P3 xp[about(axp1, ’t1/p1’)]/xp2[about(axp2, ’t2/p2’)]

xp[about(axp1, ’t1/p1’)]//xp2[about(axp2, ’t2/p2’)]

Since we did not have an automatic query processing facility,
we processed the queries manually but in a mechanic fashion.
Processing the INEX query patterns takes place in two steps

• classify the query into (a sequence of) three basic query
patterns (shown in Table 1);

• create a query plan to process the queries. The query
patterns are visualized in Figure 1.

The basic pattern for all XPath based queries is the single lo-
cation step, as defined in [7], augmented with an about func-
tion call (pattern P1 in Table 1). When referring to e.g., xp,
we refer to the node-set representing the location step xp; in
other words, a path leading to a certain location (or node) in
the XML syntax tree. The first query pattern consists of one
location step to identify the nodes to be retrieved, ranked
by an about expression over a node-set reached by a second
location step. The two other (more complex) patterns P2

and P3 are essentially multiple interrelated instances of the
basic pattern P1 . The XPath location steps may also ap-
ply (Boolean) predicate filters, e.g. selecting nodes with a
particular value range for yr.

3. LOGICAL LEVEL
The logical level is based on a probabilistic region algebra.
Region algebra was introduced by Burkowski [2], Clarke et
al. [3], and Tova and Milo [4]. The aim of the earliest text
region algebra approaches has been to enable structured text
search. Later, it has been applied to related tasks as well,
including search on nested text regions [13], processing of
structured text [17], and ranked retrieval from structured
text documents [15].

The basic idea behind region algebra approaches is the rep-
resentation of text documents as a set of ‘extents’, where

title:[1..4] bdy:[5..24]

sec:[6..14]

article:[0..25]

sec:[15..23]

‘dating’:[17..17]

p:[11..13] p:[19..22]p:[16..18]p:[7..10]

‘...’:[3..3]

‘...’:[20..20] ‘...’:[21..21]
‘Maxima’:[12..12]

‘Willem−Alexander’:[8..8]

‘...’:[2..2]

‘...’:[9..9]

@lang

@pdate

Figure 2: Example XML syntax tree with start and
endpoint assignment.

each extent is defined by its starting and end position. The
application of the idea of text extents to XML documents is
straightforward. If we regard each XML document instance
as a linearized string or a set of tokens (including the doc-
ument text itself), each component can then be considered
as a text region or a contiguous subset of the entire lin-
earized string. Therefore, a text region a can be identified
by its starting point sa and ending point ea within the en-
tire linearized string. Figure 2 visualizes an example XML
document (as a syntax tree) with the start point and end
point numbering for the nodes or regions in the tree. As
an example, the bdy-region corresponds to (closed) interval
[5..24].

Let us introduce the basic set of region operators. We use
capital letters (A, B, C) to denote the region sets, and their
corresponding non-capitals to denote regions in these region
sets (a, b, c). The operators take region sets as input and
give a result which is again a region set. The definition of
region operators is given in Table 2. Interval operator I (t)
returns the region set representing the occurrences of term t
as a content word in the XML document; note that it gives
a result set in which sa = ea for every region, assuming t
is a single term and not a phrase. Location operator L(xp)
denotes the sequential application of XPath location steps,
i.e., axis- and node-tests (a definition of axis- and node-tests
can be found in [16]). Optionally, location step operator L
also processes predicate tests on node or attribute values
specified in the XPath expression.

Table 2: Region Algebra Operators.
Operator Operator definition

I(t) {a|sa, ea are pre and post index of term t}
L(xp) C = XPath(xp)
A � B {a|a ∈ A ∧ b ∈ B ∧ sa ≤ sb ∧ ea ≥ eb}
A � B {a|a ∈ A ∧ b ∈ B ∧ sa ≥ sb ∧ ea ≤ eb}
A4B {c|c ∈ A ∧ c ∈ B}
A5B {c|c ∈ A ∨ c ∈ B}

Table 3 expresses the patterns identified in the previous Sec-
tion using region algebra operators (ignoring ranking for



Pattern 1 Pattern 2 Pattern 3

AXP

XP

AXP2‘...’

AXP1

XP

AXP1 XP2

AXP2

XP

Figure 1: Example instances of the three defined patterns.

Table 3: Pattern definitions based on pure region algebra operators.
Pattern Algebraic expression

P1 (xp, axp) L(xp) � (L(axp) � I(t))
L(xp) � ((L(axp) � I(t1))4 (L(axp) � I(t2))4 ...4 (L(axp) � I(tn)))

P2 (xp, axp1 , axp2 ) P1(xp, axp1)4 P1(xp, axp2)
P1(xp, axp1)5 P1(xp, axp2)

P3 (xp1 , xp2 , axp1 , axp2 ) P1(xp2, axp2) � P1(xp1, axp1)

now). Pattern 1 distinguishes between term (t) and phrase
expressions (p = {t1 , t2 , ..., tn}). Patterns 2 and 3 are rewrit-
ten into several interrelated instances of pattern 1. Table 4
introduces a probabilistic extension of the pure region alge-
bra operators. In order to introduce ranking, we extend the
notion of region with its relevance score; i.e., every region a
has an associated relevance score pa. In cases where pure re-
gion algebra operators are used, the value of the introduced
relevance score is equal to a predefined default value (e.g.,
pa = 1) for each resulting region in a region set.

Table 5 gives the probabilistic region algebra expressions
corresponding to the INEX query patterns identified be-
fore. The tp1 is used to denote ’t1/p1’ or the combination
of ’t1/p1’ and ’t2/p2’ (the choice between these options is
made at the conceptual level). Similarly, tp2 is either ’t2/p2’
or a combination of ’t2/p2’ and ’t1/p1’.

Expressing query plans using the operators given in Ta-
ble 4 preserves data independence between the logical and
the physical level of a database. Similarly, these operators
enable the separation between the structural query process-
ing and the underlying probabilistic model used for ranked
retrieval: a design property termed content independence
in [6]. The instantiation of these probabilistic operators is
implementation dependent and does not influence the global
system architecture. This gives us the opportunity to change
the probabilistic model used or to modify the existing model
while keeping the system framework, creating the opportu-
nity to compare different probabilistic models with minimal
implementation effort.

4. PHYSICAL LEVEL
The physical level of the TIJAH system relies on the Mon-
etDB binary relational database kernel [1]. This Section
details implementation and execution strategy for each of
the patterns.

The text extents used at the logical level are represented by
XML text regions at the physical level, and encoded using a
preorder/postorder tree encoding scheme, following [9, 10].
The XML text regions are stored as three-tuples { si, ei, ti },
where:

• si and ei represent the start and end positions of XML
region i ;

• ti is the (XML) tag of each region.

The set of all XML region tuples is named the node index
N . Index terms present in the XML documents are stored
in a separate relation called the word index W. Index terms
are considered text regions as well, but physically the term
identifier is re-used as both start and end position to reduce
memory usage. The physical layer has been extended with
the text region operators shown in Table 6. Boolean pred-
icate filters are always applied first. For further details on
this indexing scheme, refer to [5, 14].

4.1 Pattern 1
Pattern 1 for the VCAS scenario Processing pattern 1
in Table 1 requires two basic steps: relating node-sets xp and
axp to each other, and processing the about operator. Node-
sets xp and axp must have a parent - descendant1 structural

1Parent - child relationships are considered a specific variant
of parent - descendant relationships.

Table 6: Text region operators at the physical level.
Operator Definition

a ⊃ b true ⇐⇒ sb > sa ∧ eb < ea

a ⊂ b true ⇐⇒ sa > sb ∧ ea < eb

A 1⊃ B {(sa , sb)| a ← A, b ← B , a ⊃ b}
A 1⊂ B {(sa , sb)| a ← A, b ← B , a ⊂ b}



Table 4: Probabilistic region algebra operators. Note that the “ranked containing” and “ranked and” operators are

used to define the about function.
Operator Operator description Operator usage examples

A . B ranked containing (based on LM) L(axp) . I(t)
A � B average containing L(xp) � (L(axp) . I(t))
A∆B ranked and (based on LM) L(xp) � ((L(axp) . I(t1))∆(L(axp) . I(t2)))
A � B average contained (L(xp1) � (L(axp1) . I(t1))) � (L(xp2) � (L(axp2) . I(t2)))
A4B complex and (L(xp) � (L(axp1) . I(t1)))4 (L(xp) � (L(axp2) . I(t2)))
A5B complex or (L(xp) � (L(axp1) . I(t1)))5 (L(xp) � (L(axp2) . I(t2)))

Table 5: Pattern definitions based on probabilistic region algebra operators.
Pattern Algebraic expression

P1 (xp, axp, t) L(xp) � (L(axp) . I(t))
P1 (xp, axp, p) L(xp) � ((L(axp) . I(t1))∆(L(axp) . I(t2))∆...∆(L(axp) . I(tn)))
P2 (xp, axp1 , axp2 , tp1 , tp2 ) P1(xp, axp1, tp1)4 P1(xp, axp2, tp2)

P1(xp, axp1, tp1)5 P1(xp, axp2, tp2)
P3 (xp1 , xp2 , axp1 , axp2 , tp1 , tp2 ) P1(xp2, axp2, tp2) � P1(xp1, axp1, tp1)

L

Nxp

W Q

1

L

Nxp

L

axp N

1⊃

1⊂

1⊂

about

avg-groupby

Figure 3: Physical query plan for pattern 1.



relationship. So, the pattern is processed as follows (visual-
ized in Figure 3):

• Determine the correct axp node-set for ranking. On
the physical level, this is done by executing a contain-
ment join between the node-sets xp and axp: axp 1⊂ xp.
The result of this containment join is cxp or the set of
those nodes of axp which are contained within nodes
in xp;

• Perform the about operation on the nodes in cxp (the
combination of . and ∆ operators on the logical level);

• Return the ranking for the xp node-set, based on the
rankings of the nodes present in cxp. Note that it is
possible that the ranking returns a ranking for mul-
tiple axp descendant nodes for a single xp node (e.g.,
multiple sections within an article). In that case, we
take the average as the final score for the xp node in
question. This step is the physical equivalent of the
logical . (one descendant of the type of axp) or logical
� (multiple descendants of the type of axp) operator.

Pattern 1 for the SCAS scenario The processing of pat-
tern 1 for the SCAS scenario does not differ from the pro-
cessing performed for the VCAS scenario. The containment
join will automatically remove those xp nodes not contain-
ing one or more axp nodes. This ensures only the ‘correct’
axp nodes, those within a node from the xp node-set, will
be ranked.

4.2 Pattern 2
Pattern 2 for the VCAS scenario For the processing of
pattern 2 for the VCAS scenario, we assume that conjunc-
tions and disjunctions specified in the query relate to the
structure, and never to the query terms. In case node-sets
axp1 and axp2 are equal, the pattern is rewritten to a pat-
tern 1. If the node-sets axp1 and axp2 are not equal, it is
possible these node-sets represent completely different parts
of the (sub)tree below xp, as depicted in Figure 1. In path-
based terms, if the (sub)tree starting at xp does not contain
both paths axp1 and axp2, that xp tree cannot be relevant
in the strict query scenario.

However, for a more vague query scenario, we argue that the
absence of a descendant node does not render the requested
(ancestor) target node irrelevant completely. Consider the
following expression:

/article[
about(./abstract, ’information retrieval’)

AND about(.//section, ’XML data’)
]

If an article contains no abstract, but it does score on ‘XML
data’ in one or more of the sections, the question is whether
the article is completely irrelevant. For a vague retrieval
scenario this might not be the case. Therefore, we decided
to process these expression types as follows. We split up
the expression into a series of pattern 1 expressions, and
combine the results of the individual pattern 1 executions.
The example above is split up into the following two pattern
1 expressions:

- /article[about(./abs, ’information retrieval XML data’)]
- /article[about(.//sec, ’information retrieval XML data’)]

Both subpatterns are processed as pattern 1. The two re-
sulting node-sets need to be combined for a final ranking.
An intuitive combination function for the 4 operator is tak-
ing the minimum of the (non-zero) descendant scores, and
for the5 operator the maximum. Note that, alternatively,
a more formal probabilistic choice would be to use product
and sum instead of minimum and maximum; whether this
yields better results is an open question for further research.

Pattern 2 for the SCAS scenario For the SCAS sce-
nario, all of the descendant nodes present in axp1 and axp2
need to be present in the context of an xp node. In path-
based terms: if the path xp does not contain both a path
axp1 and a path axp2, the path xp cannot be relevant. We
filter out those xp paths, not containing both the axp1 and
axp2 paths. This additional filtering step and the choice of
operator to implement the complex ‘and’ (4) and ‘or’ (5)
operators define together the difference between strict and
vague scenarios.

4.3 Pattern 3
Pattern 3 for the VCAS scenario Pattern 3 can be pro-
cessed like pattern 2, except for the fact that the target
element now lies deeper in the tree. We process this pattern
by first splitting it up into multiple instances of pattern 1:

- xp[about(axp1, ’t1/p1 t2/p2’)]
- xp/xp2[about(axp2, ’t1/p1 t2/p2’)]

The pattern 1 execution already provides for aggregation of
scores of a set of nodes of the same type, within a target
element. The question remains however how to combine
the scores of the nodes present in node-sets /xp/axp1 and
/xp/xp2/axp2. Like before, these node-sets can represent
nodes in completely different parts of the (sub)tree.

Based on the observation that the user explicitly asks for
the nodes present in the /xp/xp2 node-set, we decided to
use the rankings of those nodes as the final rankings. The
first about predicate reduces node-set xp to those nodes for
which a path axp1 exists. For the vague scenario however,
we argue that absence or presence of axp1 does not really
influence target element relevance (similar to pattern 2 in
subsection 4.2).

Summarizing, the first about predicate in the pattern men-
tioned at the start of this subsection is dropped, rewriting
the resulting pattern to a pattern 1 instance:

/xp/xp2[about(axp2, ’t1/p1 t2/p2’)]

This results in the following execution strategy for pattern
3 under the VCAS scenario: remove all about predicates
from all location steps, except for the about predicate on
the target element.

Pattern 3 for the SCAS scenario The processing of pat-
tern 3 for the SCAS scenario is stricter in the sense that we



can not simply drop intermediate about predicates, as we did
for the VCAS scenario. The general procedure consists of
1) splitting up the pattern into separate location steps and
2) structural correlation of the resulting node-sets of each
location step. The target elements are ranked by their cor-
responding about predicate only; thus, ignoring the scores
produced for the other about clauses in the query. Like in
pattern 1, the target element can have multiple descendants;
in that case, the descendants’ scores are averaged to produce
the target element scores.

As an example, consider the following expression:

/article[about(./abstract, ’t1/p1’)]
//section[about(./header, ’t2/p2’)]
//p[about(., ’t3/p3’)]

We first split up the above expression into:

- /article[(about(./abstract, ’t1/p1 t2/p2 t3/p3’)]
- //section[about(./header, ’t1/p1 t2/p2 t3/p3’)]
- //p[about(., ’t1/p1 t2/p2 t3/p3’)]

All of the patterns above produce intermediate result node-
sets that have to be structurally correlated to each other.
We can choose to perform a top-down correlation sequence,
or a bottom-up correlation sequence consisting of contain-
ment joins. The choice between a top-down or bottom-up
sequence can be an optimization decision, made at runtime
by the retrieval system. For example, if a collection contains
many paragraph elements, not contained within article ele-
ments, the system might decide to limit the amount of un-
necessary executed about predicates by choosing a top-down
approach. In the current implementation, the patterns are
always processed top-down.

5. EXPERIMENTS
For the content only (CO) topics, we designed three ex-
perimentation scenarios. The first scenario represents the
baseline scenario of ’flat-document’ retrieval, i.e. retrieval
of documents which possess no structure. After examina-
tion of the document collection, we decided to perform re-
trieval of article-components. The second scenario regarded
all subtrees in the collection as separate documents. For the
third scenario we re-used the result sets of the second run
and used a log-normal distribution to model the quantity
dimension. To penalize the retrieval of extremely long doc-
ument components (this in contrast with the language model
that assigns a higher probability to longer documents), as
well as extremely short document components, we set the
mean at 2516. Experiments for INEX 2002 showed that
2516 words was the average document component length of
relevant document components according to the strict evalu-
ation function used in INEX 2002. Table 7 gives a summary
of our experimentation scenarios.

For both the SCAS (strict content-and-structure) and VCAS
(vague content-and-structure), we submitted one run each
(not mentioned in Table 7); the topics executed according
to the conceptual, logical and physical SCAS and VCAS
pattern rule-sets as detailed in the previous Sections. The

Table 7: Original CO experimentation scenarios;
note that we used a length of 2516 as preferred com-
ponent length in scenario 3. The experiments for
INEX 2002 showed 2516 was the average document
component length of relevant components, accord-
ing to the strict evaluation function used in INEX
2002.

Scenario Retr. Unit Dimension(s) MAP

Vart {tr(′article ′)} topicality 0.0392
Vcomp {tr(′∗′)} topicality 0.0387
Vcomp−logn {tr(′∗′)} top., quant .(2516 ) 0.0374

mean average precision (MAP) value of the SCAS run is
0.2595.

The originally submitted CO-runs all used the keywords
present in the keyword-element of each topic. Before exe-
cuting each topics, query stopwords were removed using the
SMART query stopword list, and all remaining keywords
were stemmed with the Porter stemmer. Stopword removal
(using the SMART stopword list) and stemming was also
performed on the indexed collection terms, as well as the
removal of those terms shorter than 2 characters and longer
than 25 characters.

We performed several additional CO runs. First, we ex-
tracted, for each topic, the terms occurring in the title about
clauses (T) and in the description (D) and keyword (K)
component text. Second, we also created CO-runs, where
we replaced the log-normal length prior (logn runs) with a
standard element length prior (logs runs):

P (D) = log(
∑

t

tf(t, element))

Finally, after observing a big difference in system perfor-
mance with the approach by Sigurbjörnsson, Kamps and
de Rijke [19], which is based on the same language mod-
eling technique, we decided to reproduce their approach of
combining surrounding document evidence with element ev-
idence (aw runs). The average precision values of all addi-
tional runs are summarized in the last column of Table 8.2

From the average precision values in Table 8, the following
observations are clear:

• large elements should not be discounted (under the
current metrics of evaluation; difference between logn
and logs runs);

• combining element scores with their surrounding con-
text scores appears to improve performance signifi-
cantly (aw runs);

• in spite of the noise in the description text, using the
description terms improves retrieval results (compar-
ing columns K and TD).

2The differences between the Vcomp and Vcomp−logn MAP
scores in Tables 7 and 8 originate from the (different) order-
ing of elements with equal score.



Table 8: Mean average precision values and average
query execution times (fifth column) for the addi-
tional CO experimentation scenarios. Columns de-
note the topic part used for the run (T for title,
TD for title and description terms and TK for title
and keyword terms. For evaluation, the strict eval-
uation measure (for 2003) was used. The average
query execution times are wallclock timings.

Scenario K TD TK

Vcomp 0.0341 0.0383 0.0447
Vcomp−logn 0.0351 0.0390 0.045
Vcomp−logs 0.0652 0.0766 0.0740
Vcomp−logn−aw 0.0697 0.0863 0.0905
Vcomp−logs−aw 0.1043 0.1224 0.1205

We plan to further investigate the cause of the performance
difference between the logn and logs runs. One explanation
could be that the log-normal’s mean value of 2516 words,
as desired component size, is not the correct value given the
relevance assessments. Another explanation for this discrep-
ancy between evaluation results and our intuition, expressed
in the log-normal length prior, could be sought in the current
evaluation metrics that reward exhaustivity over specificity.

Besides measuring the effectiveness of our retrieval system,
we also measured the efficiency of indexing and querying
the collection. Table 9 shows the average query execution
times for the various runs (averaged over the 36 CO topics,
and over the 30 CAS topics for the SCAS and VCAS runs).
All measurements are wallclock timings, measured in sec-
onds. The hardware used for the executions of the runs is
an AMD Opteron machine, running at 1.4GHz and having
2GB of main memory. The indexing time is divided into two
separate parts:

• the time needed for insertion of data Tinsert, measured
at 176 seconds;

• the time needed for postprocessing Tpostprocess, mea-
sured at 191 seconds. Postprocessing consists of deter-
mining collection frequencies, component text lengths
(ie., component lengths disregarding markup) and in-
dexing of topics.

Memory use of our system varied between 250MB and 1GB,
where 1GB was reached when materializing large compo-
nents, or large component sets (ie., large with regard to the
number of components in the result set) for executing the
language model. Moreover, memory use was increased by
behavior of the database kernel used: the kernel loads tables
completely into memory when they are needed, even if not
all parts of the table are used. This redundant memory use
as a result of loading irrelevant data can be avoided by, e.g.,
horizontal fragmentation of the tables as in [18]. The ex-
tra time needed for the logn and logs runs (when compared
to the comp run) can be explained by extra join-operations
against parts of the index, needed for retrieving the com-
ponent text lengths and calculation of the logarithm values.
Also, the aw runs take more execution time as a result of

Table 9: Average query execution times, averaged
over the 36 CO topics, and measured in seconds
(wallclock time). Note that the first row is the orig-
inal article run, performed with keywords only (the
K column). The execution times of our originally
submitted three runs are displayed in the first three
rows and the first column (boldfaced). The other
timings are the timings for the additional unofficial
runs, and the last two rows show the execution times
for our original SCAS and VCAS runs.

Scenario K TD TK

Vart 6.75 - -
Vcomp 44.08 68.19 53.22
Vcomp−logn 45.13 69.58 54.47
Vcomp−logs 45.25 69.69 54.47
Vcomp−logn−aw 47.16 72.22 56.80
Vcomp−logs−aw 47.25 74.44 57

Vscas - - 35.37
Vvcas - - 35.24

the extra containment joins needed to resolve the specified
structural constraints.

The time needed for indexing can be reduced further. First,
for the sake of simplicity, the system indexes the full XPath
(in string format) for each component in the collection. The
full XPath indexing is redundant and can be replaced by a
facility to resolve the component XPaths when presenting
results to the user, or by a more compact index structure.
Second, we are looking into possibilities for encoding a larger
part of the data in more compact structures, e.g., bitvectors.

6. CONCLUSIONS AND FUTURE WORK
Our participation in INEX can be summed up as an exer-
cise in applying current and state of the art information re-
trieval technology to a structured document collection. We
described a relatively straightforward approach to simplify
the implementation of retrieval models that combine struc-
tural and content properties. We hope to take advantage
of this flexibility to a larger extend in our future research,
as the current approach to retrieval has only used a small
proportion of all the structural information present in XML
documents. Other research includes more extensive exper-
imentation in the area of relevance feedback, and develop
a different normalization mechanism to remove the bias of
the language model on short components. Lastly, we aim to
improve the efficiency of the system, both memory and cpu
wise, by vertically fragmentation and encoding of data into
more compact structures.

7. REFERENCES
[1] P. Boncz. Monet: a Next Generation Database Kernel for

Query Intensive Applications. PhD thesis, CWI, 2002.

[2] F.J. Burkowski. Retrieval Activities in a Database
Consisting of Heterogeneous Collections of Structured
Texts. In Proceedings of the 15th ACM SIGIR Conference
on Research and Development in Information Retrieval,
pages 112–125, 1992.

[3] C.L.A. Clarke, G.V. Cormack, and F.J. Burkowski. An
Algebra for Structured Text Search and a Framework for



its Implementation. The Computer Journal, 38(1):43–56,
1995.

[4] M. Consens and T. Milo. Algebras for Querying Text
Regions. In Proceedings of the ACM Conference on
Principles of Distributed Systems, pages 11–22, 1995.

[5] A. P. de Vries, J. A. List, and H. E. Blok. The Multi-Model
DBMS Architecture and XML Information Retrieval. In
H. M. Blanken, T. Grabs, H.-J. Schek, R. Schenkel, and
G. Weikum, editors, Intelligent Search on XML, volume
2818 of Lecture Notes in Computer Science/Lecture Notes
in Artificial Intelligence (LNCS/LNAI), Springer-Verlag,
pages 179–192. Springer-Verlag, Berlin, New York, etc.,
August 2003.

[6] A.P. de Vries. Content independence in multimedia
databases. Journal of the American Society for Information
Science and Technology, 52(11):954–960, September 2001.

[7] M.Fernández et al. XML Path Language (XPath 2.0).
Technical report, W3C, 2003.

[8] G. Graefe. Query evaluation techniques for large databases.
ACM Computing Surveys, 25(2):73–170, June 1993.

[9] T. Grust. Accelerating XPath Location Steps. In
Proceedings of the 21st ACM SIGMOD International
Conference on Management of Data, pages 109–120, 2002.

[10] Torsten Grust and Maurice van Keulen. Tree Awareness for
Relational DBMS Kernels: Staircase Join. In H. M.
Blanken, T. Grabs, H.-J. Schek, R. Schenkel, and
G. Weikum, editors, Intelligent Search on XML, volume
2818 of Lecture Notes in Computer Science/Lecture Notes
in Artificial Intelligence (LNCS/LNAI), pages 179–192.
Springer-Verlag, Berlin, New York, etc., August 2003.

[11] D. Hiemstra. Using Language Models for Information
Retrieval. PhD thesis, University of Twente, Twente, The
Netherlands, 2000.

[12] D. Hiemstra. A database approach to content-based XML
retrieval. In Proceedings of the First Workshop of the
Initiative for the Evaluation of XML Retrieval, 2002.

[13] J. Jaakkola and P. Kilpelainen. Nested Text-Region
Algebra. Technical Report C-1999-2, Department of
Computer Science, University of Helsinki, 1999.

[14] J.A. List and A.P. de Vries. CWI at INEX 2002. In
Proceedings of the First Workshop of the INitiative for the
Evaluation of XML Retrieval (INEX), ERCIM
Publications, 2003, 2002.

[15] Katsuya Masuda. A Ranking Model of Proximal and
Structural Text Retrieval Based on Region Algebra. In
Proceedings of the ACL-2003 Student Research Workshop,
2003.

[16] V. Mihajlovic, D. Hiemstra, and P. Apers. On Region
Algebras, XML Databases, and Information Retrieval. In
Proceedings of the 4th Dutch-Belgian Information Retrieval
Workshop, to apear, 2003.

[17] R.C. Miller. Light-Weight Structured Text Processing. PhD
thesis, Computer Science Department, Carnegie-Mellon
University, 2002.

[18] A.R. Schmidt, M.L. Kersten, M.A. Windhouwer, and
F. Waas. Efficient Relational Storage and Retrieval of XML
Documents. In International Workshop on the Web and
Databases (in conjunction with ACM SIGMOD), pages
47–52, 2000.

[19] B. Sigurbjörnsson, J. Kamps, and M. de Rijke. An
element-based approach to XML retrieval. In N. Fuhr,
M. Lalmas, and S. Malik, editors, Proceedings of the
Second Workshop of the INitiative for the Evaluation of
XML retrieval (INEX), ERCIM Publications, 2004.

[20] D. Tsichritzis and A. Klug. The ANSI/X3/SPARC DBMS
framework report of the study group on database
management systems. Information systems, 3:173–191,
1978.


