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Abstract

This paper discusses our participation in INEX (the Initiative for the Evaluation of XML
Retrieval) using the TIJAH XML-IR system. TIJAH’s system design follows a ‘standard’
layered database architecture, carefully separating the conceptual, logical and physical levels.
At the conceptual level, we classify the INEX XPath-based query expressions into three
different query patterns. For each pattern, we present its mapping into a query execution
strategy. The logical layer exploits score region algebra (SRA) as the basis for query processing.
We discuss the region operators used to select and manipulate XML document components.
The logical algebra expressions are mapped into efficient relational algebra expressions over
a physical representation of the XML document collection using the ‘pre-post numbering
scheme’. The paper concludes with an analysis of experiments performed with the INEX test
collection.

1 Introduction

This paper describes our research for INEX 2003 (the Initiative for the Evaluation of XML Re-
trieval). We participated with the TIJAH XML-IR retrieval system, a research prototype built on
top of the MonetDB database kernel [2]. Key feature of the TIJAH system is its layered design,
following the basic system architecture of relational database management systems.

Traditional information retrieval systems represent a document as a ‘bag-of-words’. Inverted
file structures provide the basis for implementing a retrieval system for such ‘flat’ documents. In
the case of structured documents however, we think designing the retrieval system following ‘the
database approach’ is best to keep the more complex data representation manageable.

The main characteristic of the database approach is a strong separation between conceptual,
logical and physical levels, and the possibility of using different data models and query languages at
each of those levels [25]. In relational database systems, a significant benefit of this data abstraction
(through the separation between the levels in database design) is to enable query optimization.
A SQL query (a ‘calculus expression’) at the conceptual level is first translated into relational
algebra. The algebraic version used at the logical level is then rewritten by the query optimizer
into an efficient physical query plan. The physical algebra exploits techniques like hashing and
sorting to improve efficiency [10].

For XML-IR systems, following this separation in layers gives another, additional advantage: by
choosing the appropriate level of abstraction for the logical level, the development of probabilistic
techniques handling structural information is simplified, and kept orthogonal to the rest of the
system design. Section 3 details our approach, based on a region algebra extension for supporting
ranked retrieval.
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The TIJAH system has been used for participation in the Initiative for the Evaluation of XML
Retrieval (INEX). INEX offers an XML document collection of approximately 500MB, a set of
topics, relevance assessments and a collection of evaluation measures. The document collection
consists of IEEE scientific articles of various research fields from the years 1995 to 2002. In 2002
and 2003, the topics were created by the participating groups in the Initiative. The participants
were also asked to perform the relevance assessments for their accepted final topics. Relevance
assessments were done on two dimensions: exhaustivity and specificity. Exhaustivity describes the
extent to which a retrieved component discusses the topic of request, while specificity describes
the extent to which the retrieved component focuses on the topic of request. Both dimensions
have a four-graded scale.

Three types of search tasks were defined for INEX 2003: Content-Only (CO), Strict Content-
and Structure (SCAS) and Vague Content-and-Structure (VCAS). The CO task focused on re-
trieval in the XML collection without imposing any structural constraints. The SCAS and VCAS
tasks were employed for queries that consider both structure and content. The SCAS task con-
sidered any structural constraints specified as strict, that is, the structural constraints specified
in the query had to be fully satisfied. For the VCAS scenario, structural constraints could be
relaxed.

Our paper is organized along the layers of the TIJAH system design. Section 2 describes
the query language used at the conceptual level, identifies three patterns in the INEX topic set,
and explains how the language modeling approach to information retrieval is used for the about
operator. Section 3 introduces the score region algebra (SRA) and explains how the three query
patterns are expressed at the logical level. Section 4 explains how the algebraic expressions are
mapped into efficient relational algebra expressions over a physical representation of the document
collection using the ‘pre-post numbering scheme’. We conclude with a discussion of experiments
performed with our approach for the three INEX search tasks.

2 Conceptual Level

The INEX query language extends XPath with a special about function, ranking XML elements
by their estimated relevance to a textual query. As such, the invocation of the about function can
be regarded as the instantiation of the retrieval model.

2.1 Retrieval Model

The retrieval model used for the about function has been based on our previous work, applying
the language modeling approach to information retrieval to the INEX retrieval tasks, see e.g.
[17, 14]. The exhaustivity dimension of relevance seems to be captured rather intuitively in the
language modeling approach. It estimates relevance using a foreground model and a background
model (both probability distributions: respectively P (Ti|Dj) denoting the probability of a term
Ti given a particular document component1 Dj , and P (Ti) denoting the probability of the term Ti

in general English), which are linearly combined to give a final score for probability of relevance
P (R):

P (R) =
n∏

i=1

(λP (Ti|Dj) + (1− λ)P (Ti))

in which n is the query length. The linear combination of the probabilities is also known as
smoothing, and is done to avoid the sparse data problem [13]. We want to avoid assigning a value
of 0 to the entire product of probabilities, when a single term Ti does not occur in the document
component Dj (the foreground probability value for term i will then be 0).

The foreground and background probabilities, P (Ti|Dj) and P (Ti) respectively, are based on
specific collection statistics and are defined as maximum likelihood estimators. In the following

1A document component is an XML fragment, or, a subtree of an XML syntax tree.
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equations, variable t ranges over the term domain, i.e., all terms in the collection, and d over the
document domain, i.e., all documents in the collection. For the foreground probability, we use a
well-known estimator based on the term frequency (measuring how many times a term Ti occurs
in a document component Dj :

P (Ti|Dj) =
tfi,j∑
t tft,j

For estimating the background probability, common estimators are collection frequencies (mea-
suring how many times a term occurs in the collection) or document frequencies (measuring in
how many unique documents the term occurs). Document frequencies are actually document
component frequencies in our case, measuring in how many unique document components a term
occurs.

Pcf (Ti) =
cfi∑
t cft

, Pdf (Ti) =
dfi∑
t dft

The language model scores can be adjusted by a document component prior. The ‘standard’ choice
for a prior probability P (Dj) has been based on the rationale that longer document components
have a higher a priori probability of containing relevant information, simply due to their length:

Pls(Dj) =
∑

t tft,j∑
t,d tft,d

Note that this ‘standard prior’ rewards long document components, which might not be very
specific. Nevertheless, the prior produces good overall effectiveness in the experiments presented in
Section 5. The specificity dimension of relevance might be better described by an alternative length
prior, e.g., following a standard-log-normal distribution. We speculate here that the characteristics
of the standard-log-normal distribution reflects behavior of a real user. Very short documents are
likely to contain insufficient information, and consequently, are likely to not be satisfying retrieval
units. On the other hand, very long document components require much more effort from the
user in locating the relevant pieces of information, which could be considered unsatisfying as well.
The characteristics of the log-normal distribution fit this user preference: its steep slope at the
start discounts the likelihood that very short document components are relevant, while the long
distribution tail reflects that we do not expect long document components to be very focused
on the topic of request. The standard-log-normal length prior is defined as follows, where |Dj |
denotes the length of the document component Dj .

Plogn(Dj) =
1

|Dj |σ
√

2π
e−

1
2 (

log |Dj |−µ

σ )2

2.2 The CO Task

For INEX 2002 and 2003, we combined the estimators outlined in subsection 2.1 in the following
two scoring functions for performing the CO retrieval task (RSV stands for Retrieval Status Value
of the document component Dj):

RSV1 =
n∏

i=1

(λP (Ti|Dj) + (1− λ)Pcf (Ti))

RSV2 = Plogn(Dj) RSV1

We used the scoring functions in our three originally submitted experimental scenarios. Scoring
function RSV1 was used for two retrieval scenarios:

• fixed retrieval, where the retrieval unit was restricted to article components;

• ‘free retrieval’, where the retrieval unit was not restricted to any specific component type.
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Figure 1: Visualisation of different query patterns.

For additional experiments, we created three other scoring functions:

RSV3 = Pls(Dj)RSV1

RSV4 =
n∏

i=1

(λP (Ti|Dj) + (1− λ)Pdf (Ti))

RSV5 = Pls(Dj) RSV4

Finally, comparison of the evaluation results between our TIJAH system and the system de-
scribed by Sigurbjörnsson, Kamps and de Rijke [23], lead to the discovery of a significant per-
formance difference. Since both systems are based on the same language modeling technique,
we decided to also experiment with their approach, using evidence from the surrounding article
component; the score of each component is smoothed with the score of its ancestor article node.
We refer to the article-weighted versions of RSV2 and RSV3 as RSV6 and RSV7 respectively.

2.3 The SCAS and VCAS Tasks

For both the SCAS and VCAS tasks, we introduced the concept of patterns. Since we lacked
an automatic query processing mechanism at the time of evaluation, we processed the queries
manually (but in a mechanic fashion). Inspection of the topic set highlights three repeating query
patterns, shown in Table 1. Processing these INEX query patterns takes place in two steps:

• classify the query into (a sequence of) three basic query patterns (shown in Table 1);

• create a query plan to process the queries. The query patterns are visualized in Figure 1.

Table 1: SCAS and VCAS pattern set. Note that xp, xp2, axp, axp1 and axp2 are location steps;
‘t|p’ denotes a set of terms or phrases.

Pattern Pattern definition

P1 xp[about(axp, ‘t|p’)]
P2 xp[about(axp1, ‘t1|p1’) AND about(axp2, ‘t2|p2’)]

xp[about(axp1, ‘t1|p1’) OR about(axp2, ‘t2|p2’)]
P3 xp[about(axp1, ‘t1|p1’)]//xp2[about(axp2, ‘t2|p2’)]

The basic pattern for all XPath based queries is the single location step, as defined in [9],
augmented with an about function call (pattern 1 in Table 1). When referring to, for example
xp, we refer to the node-set representing the location step xp; in other words, a path leading to
a certain location (or node) in the XML syntax tree. The XPath location steps may also apply
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(Boolean) predicate filters, e.g., selecting nodes with a particular value range for year (yr element
node in INEX collection).

Pattern 1 is considered to be the elementary pattern for processing. The two other (more
complex) patterns 2 and 3 are essentially multiple interrelated instances of the basic pattern 1.

2.3.1 Pattern 1

The first query pattern consists of one location step (xp) used to identify the nodes to be retrieved,
ranked by an about expression over a node-set reached by a second location step (axp). For pattern
1, no distinction is made between SCAS and VCAS scenarios. Scores collected for the nodes
satisfying location step axp are aggregated to a single score for the target node (using function
fI, defined at the logical layer, see Section 3.2).

2.3.2 Pattern 2

Pattern 2 distinguishes between the VCAS and the SCAS tasks, where we argue for the vague
query scenario that absence of specified descendant steps does not render the requested (ancestor)
target nodes irrelevant completely.

Pattern 2 for VCAS For pattern 2 in the VCAS scenario, we assume that conjunctions and
disjunctions specified in the query relate to the structure, and never to the query terms. In case
node-sets axp1 and axp2 are equal, the pattern is rewritten to a pattern 1. If the node-sets axp1
and axp2 are not equal, it is possible these node-sets represent completely different parts of the
(sub)tree below xp, as depicted in Figure 1.

Consider the following expression:

//article[

about(.//abs, ’information retrieval’)

AND about(.//sec, ’XML data’)

]

If an article contains no abstract, but it does score on ‘XML data’ in one or more of the sections, the
question is whether the article is completely irrelevant. For a vague retrieval scenario this might
not be the case. Therefore, we decided to process these expression types as follows. We split up
the expression into a series of pattern 1 expressions, and combine the results of the individual
pattern 1 executions. Also, note that we use the terms and phrases of all separate about clauses
together in each instance (experiments have shown that this gives better average performance on
the INEX topics). So, the example above is split into the following two pattern 1 expressions:

- //article[about(.//abs, ’information retrieval XML data’)]

- //article[about(.//sec, ’information retrieval XML data’)]

Both subpatterns are processed as pattern 1. The two resulting node-sets are combined for a final
ranking (see Section 3.2).

Pattern 2 for SCAS If the (sub)tree starting at xp does not contain both paths axp1 and
axp2, that xp tree cannot be relevant for the strict scenario. Therefore, the distinction between
SCAS and VCAS scenarios for pattern 2 is the requirement that all of the descendant nodes
present in axp1 and axp2 are contained in the context of the xp target nodes.

2.3.3 Pattern 3

Similarly to pattern 2, the two CAS scenarios are treated differently for pattern 3.
Pattern 3 for VCAS Pattern 3 can be processed like pattern 2, except for the fact that the

target element now lies deeper in the tree. We process this pattern by first splitting it up into
multiple instances of pattern 1:

- xp[about(axp1, ’t1|p1 t2|p2’)]

- xp//xp2[about(axp2, ’t1|p1 t2|p2’)]
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The pattern 1 execution already provides for aggregation of scores of a set of nodes of the same
type, within a target element. The question remains however how to combine the scores of the
nodes present in node-sets xp//axp1 and xp//xp2//axp2. Like before, these node-sets can represent
nodes in completely different parts of the (sub)tree.

Based on the observation that the user explicitly asks for the nodes present in the xp//xp2
node-set, we decided to use the rankings of those nodes as the final rankings. The first about
predicate reduces node-set xp to those nodes for which a path axp1 exists. For the vague scenario
however, we argue that absence or presence of axp1 does not really influence target element
relevance.

Summarizing, the first about predicate in the pattern mentioned at the start of this subsection
is dropped, rewriting the resulting pattern to a pattern 1 instance:

xp//xp2[about(axp2, ’t1|p1 t2|p2’)]

This results in the following execution strategy for pattern 3 under the VCAS scenario: remove
all about predicates from all location steps, except for the about predicate on the target element,
and process it as a vague scenario for pattern 2.

Pattern 3 for SCAS The processing of pattern 3 for the SCAS scenario is stricter in the
sense that we can not simply drop intermediate about predicates, as we did for the VCAS scenario.
The general procedure consists of:

• splitting up the pattern into separate location steps (similar to pattern 3 VCAS scenario);

• structural correlation (using descendant or ancestor axis tests) of the resulting node-sets of
each location step.

The target elements for each sub pattern are ranked by their corresponding about predicate.
As an example, consider the following expression:

//article[about(.//abstract, ’t1|p1’)]

//section[about(.//header, ’t2|p2’)]

//p[about(., ’t3|p3’)]

We first split up the above expression into:

- //article[about(.//abstract, ’t1|p1 t2|p2 t3|p3’)]

- //article//section[about(.//header, ’t1|p1 t2|p2 t3|p3’)]

- //article//section//p[about(., ’t1|p1 t2|p2 t3|p3’)]

All of the patterns above produce intermediate result node-sets that have to be structurally
correlated to each other. Furthermore, the ranking results have to be combined (propagated)
during this correlation, and assigned to the pattern that specifies the desired result node-set.

3 Logical Level

Patterns recognised at the conceptual level are translated into physical query plans via an inter-
mediate step, the logical level. We have based the logical query algebra and data model on a
region algebra extended to support ranked retrieval at the logical level. The region algebra con-
cept was introduced by Salminen and Tompa [21] and Burkowski [3] for searching in structured
documents and supporting search and ranked retrieval in text dominated databases, respectively.
It has been extended to support overlap between regions by Clarke et al. [4], with operators for
proximity search by Baeza-Yates and Navarro [1], and with direct inclusion (parent-child relation)
and “both included” operators by Consens and Milo [5]. Jaakkola and Kilpelainen [15] introduced
nesting properties in region algebra, while Miller [20] used the region algebra approach for pro-
cessing of structured text. Finally, an attempt for adapting region algebra to ranked retrieval has
been presented in [19, 18].
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title:[1..4] bdy:[5..24]

sec:[6..14]

article:[0..25]

sec:[15..23]

p:[11..13] p:[19..22]p:[16..18]p:[7..10]

‘...’:[3..3]

‘...’:[20..20] ‘...’:[21..21]
‘...’:[12..12]

‘...’:[2..2]

‘...’:[9..9]‘...’:[8..8]

‘...’:[17..17]

Figure 2: Example XML syntax tree with start and endpoint assignment.

The basic idea behind the region algebra approaches is the representation of text documents
as a set of extents, where each extent is defined by its start and end positions. The application of
the idea of text extents to XML documents is straightforward. Regarding each XML document
instance as a linearized string or a set of tokens (including the document text itself), each com-
ponent can then be considered as a text region or a contiguous subset of that entirely linearized
string. Figure 2 visualizes an example XML document (as a syntax tree) with the start point
and end point numbering for the nodes or regions in the tree. As an example, the bdy-region
corresponds to the (closed) interval [5..24].

3.1 A Score Region Algebra and Data Model

Since we focus on XML documents and want to support as much as we can from the W3C XML
query languages and IR query languages, we decided to use the rich information set of the XML
data model [6] as a base for the definition of our score region algebra data model. Furthermore,
given an expressive data model we would be able to distinguish between different information
items in XML (see [6]) and to further extend the algebra with new operators and concepts for
ranked retrieval. As we enriched the region definition with a score concept, we named the algebra
score region algebra, or SRA in short.

The XML data model consists of element, text, comment, and processing instruction nodes,
as well as attribute information and text node content. Although XML documents might be
considered as graphs because of ID/IDREF typed attributes, we will simplify the XML structure
and treat these entities as they are organized in a hierarchical (tree-like) structure. Regarding the
complexity of the XML data model we could not directly apply any of the previous region algebra
approaches for defining the logical data model.

In the specification of the SRA data model, we have to distinguish between the different node
types in XML documents to provide a uniform platform for defining the region algebra operators.
To be able to represent XML properly, we extended the definition of a region. The logical data
model is based on region sets, where each region is defined as follows:

Definition 1 The SRA data model is defined on the domain R which represents a set of region
tuples. Region tuple r (r ∈ R), r = (s, e, n, t, p), is defined by five attributes: region start attribute
- s, region end attribute - e , region name attribute - n, region type attribute - t, and region score
attribute - p. Region start and end attributes must satisfy ordering constraints (ei ≥ si).

The semantics of region start and region end attributes are the same as in other region algebra
approaches: they denote the bounds of a region. The region name attributes are used to denote
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Table 2: Basic score region algebra operators.
Operator Operator definition

σn=name,t=type(R) {r|r ∈ R ∧ t = type ∧ n = name}
R1 A R2 {r1|r1 ∈ R1 ∧ ∃r2 ∈ R2 ∧ s1 < s2 ∧ e1 > e2}
R1 6A R2 {r1|r1 ∈ R1 ∧ @r2 ∈ R2 ∧ s1 < s2 ∧ e1 > e2}
R1 @ R2 {r1|r1 ∈ R1 ∧ ∃r2 ∈ R2 ∧ s1 > s2 ∧ e1 < e2}
R1 6@ R2 {r1|r1 ∈ R1 ∧ @r2 ∈ R2 ∧ s1 > s2 ∧ e1 < e2}
R1 uR2 {r3|r3 ∈ R1 ∧ r3 ∈ R2}
R1 tR2 {r3|r3 ∈ R1 ∨ r3 ∈ R2}

node names, content words, attribute names, attribute values, etc. To distinguish between different
name “roles” in XML we used the region type information item. We used node for the element
node in XML, text for the text node, term for the term present in a text node, etc. Finally, the
region score information item is used to specify the relevance score of a region with respect to a
given query.

In SRA the result of the application of operators can not introduce new regions, that is,
regions with different region bounds (i.e. s and e values) than originally specified in the database.
Furthermore, the operators can not change the name and type (n and t) of regions identified in
the database. However, algebra operators are allowed to change the value of the region score
item (p). SRA supports ranked retrieval as a part of the algebra, and not as a side-effect, which
distinguishes it from other proposals (specifically, [3] and [19]).

3.2 SRA Operators

Here we will define the score region algebra operators. SRA operators are based on the operators
specified in the previous region algebra approaches, extended to support the SRA data model and
enable ranked retrieval in XML documents.

Table 2 defines the following seven basic SRA algebra operators: selection (σ), containing
(A), not containing (6A), contained in (@), not contained in (6@), region set intersection (u), and
region set union (t). We use Ri (i = 1, 2, ...) to denote the region sets, their corresponding non-
capitals to denote regions in these region sets (ri), and corresponding indexed non-capitals to
denote region attributes (si, ei, ni, ti, pi). The operators take one or two region sets as operands
and produce a region set as result. We introduced a selection operator (σ) to enable the selection
of regions based on a name and type region attributes. Leaving the selection criterion for one of
the attributes unspecified corresponds to a wild-card, i.e., σt=node will select all regions that have
an XML element node type, regardless of their name attribute.

To enable the score computation and the region ranking based on computed scores new region
algebra operators are defined, as depicted in Table 3. Four complex scoring functions are intro-
duced in the additional SRA operators: (fA, f6A, fI, and fJ), as well as two abstract operators (⊗
and ⊕). The exact specification of these operators is given on the physical level (see Section 4.2).
The functions fA(r1, R2) and f6A(r1, R2), applied to a region r1 and region set R2, should result in
the numeric value that specifies the probability that the region r1 contains or does not contain a
term, or a set of terms present in R2. In other words they should define the retrieval model used.

The functions fI(r1, R2) and fJ(r1, R2) define how scores are propagated to the containing
or contained regions, respectively. They specify whether the propagation is performed with or
without normalization. Normalization can for example be based on the region size, or on the
number of regions in a region set. The abstract operators ⊗ and ⊕ specify the combination of
scores in AND and OR expressions respectively (e.g., taking the minimum or product score for
AND, or the maximum or the average score for OR).

Expressing query plans using the operators given in Table 2 and Table 3 preserves data indepen-
dence between the logical and the physical level of a database. Similarly, these operators enable
the separation between the structural query processing and the underlying probabilistic model
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Table 3: Region algebra operators for score manipulation.

Operator Operator definition
R1 Ap R2 {r3|r1 ∈ R1 ∧ (s3, e3, n3, t3) = (s1, e1, n1, t1) ∧ p3 = fA(r1, R2)}
R1 6Ap R2 {r3|r1 ∈ R1 ∧ (s3, e3, n3, t3) = (s1, e1, n1, t1) ∧ p3 = f6A(r1, R2)}
R1 I R2 {r3|r1 ∈ R1 ∧ (s3, e3, n3, t3) = (s1, e1, n1, t1) ∧ p3 = fI(r1, R2)}
R1 J R2 {r3|r1 ∈ R1 ∧ (s3, e3, n3, t3) = (s1, e1, n1, t1) ∧ p3 = fJ(r1, R2)}
R1 N R2 {r3|r1 ∈ R1 ∧ r2 ∈ R2 ∧ (s1, e1, n1, t1) = (s2, e2, n2, t2)∧

(s3, e3, n3, t3) = (s1, e1, n1, t1) ∧ p3 = p1 ⊗ p2}
R1 H R2 {r3|r1 ∈ R1 ∧ r2 ∈ R2 ∧ (s1, e1, n1, t1) = (s2, e2, n2, t2)∧

(s3, e3, n3, t3) = (s1, e1, n1, t1) ∧ p3 = p1 ⊕ p2}

used for ranked retrieval: a design property termed content independence in [8]. The instantiation
of these probabilistic operators is implementation dependent and does not influence the global
system architecture. This gives us the opportunity to change or to modify the existing model
while keeping the system framework, creating the opportunity to compare different probabilistic
models with minimal implementation effort.

3.3 Pattern Representation in SRA

To be able to express patterns identified on the conceptual level, an abstract operator L(xp) is
introduced. The operator is actually a translation operator which translates the XPath expression
in a region algebra expression. In other words, operator L(xp) denotes the sequential application
of XPath location steps, i.e., axis- and node-tests (a combination of containment and selection
operators). Optionally, the operator also processes predicate tests on node or attribute values
specified in the XPath expression. The current SRA data model does not support the child axis
step and it treats it as a descendant step. Notice however, that this simplified query model is
consistent with the query language proposed in [24], which forms the basis for the query language
to be used at INEX 2004.

To be able to express predicate steps, extra selection criteria are introduced in the select
operator, enabling numeric value comparison on SRA name concepts. These criteria are denoted
as σn�value,t=type(R), where � is one of the numeric value tests: � ∈ {=, 6=, >, <,≥,≤}. For
example, using the selection operator, XPath expression xp[.//yr ≥ 1999] can be expressed in the
score region algebra as:

L(xp) A (σn=“yr′′,t=node(C) A σn≥1999,t=text(C)),

where C represents the set of all regions in a database.
Table 4 gives the probabilistic region algebra expressions corresponding to the INEX query

patterns identified before. Pattern 1 distinguishes between term (tm) and phrase expressions
(pe = [tm1 , tm2 , ..., tmm ]), and between containing and not containing criteria. Patterns 2 and 3
are rewritten into several interrelated instances of pattern 1.

Notation tp1 is shorthand for tm1|pe1 or the combination of tm1|pe1 and tm2|pe2. The choice
between these options is made at the conceptual level. Similarly, tp2 denotes either tm2|pe2 or a
combination of tm2|pe2 and tm1|pe1.

4 Physical Level

The physical level of the TIJAH system relies on the MonetDB binary relational database kernel
[2]. This Section details the implementation of the physical region algebra operators and the
execution strategy for each of the patterns.
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Table 4: Pattern definitions based on score region algebra operators.
Pattern Algebraic expression

P1 (xp, axp, tm) L(xp) I (L(axp) Ap σn=tm(C))
L(xp) I (L(axp) 6Ap σn=tm(C))

P1 (xp, axp, pe) L(xp) I ((L(axp) Ap σn=tm1(C))
N (L(axp) Ap σn=tm2(C)) N ... N (L(axp) Ap σn=tmn(C)))

L(xp) I ((L(axp) 6Ap σn=tm1(C))
N (L(axp) 6Ap σn=tm2(C)) N ... N (L(axp) 6Ap σn=tmn(C)))

P2 (xp, axp1 , axp2 , tp1 , tp2 ) P1(xp, axp1, tp1) N P1(xp, axp2, tp2)
P1(xp, axp1, tp1) H P1(xp, axp2, tp2)

P3 (xp1 , xp2 , axp1 , axp2 , tp1 , tp2 ) P1(xp2, axp2, tp2) J P1(xp1, axp1, tp1)

Table 5: Text region operators at the physical level.
Operator Definition
r1 ⊃ r2 true ⇐⇒ s2 > s1 ∧ e2 < e1

r1 ⊂ r2 true ⇐⇒ s1 > s2 ∧ e1 < e2

R1 on⊃ R2 {(r1 , s2 )| r1 ← R1 , r2 ← R2 , r1 ⊃ r2}
R1 on⊂ R2 {(r1 , s2 )| r1 ← R1 , r2 ← R2 , r1 ⊂ r2}

4.1 Physical Data Model

XML text regions are encoded at the physical level using a pre-order/post-order tree encoding
scheme, following [11, 12]. Regions are stored as five-tuples (si, ei, ni, ti, pi), where

• si and ei represent the start and end positions of XML region i ;

• ni is the (XML) tag of region i;

• ti is the type of region i;

• pi is the score assigned to region i after executing the retrieval model (0 as default value).

The set of all XML region tuples is named the node index N . Information about other types of
XML entities (attributes, comments, etc.) is stored in separate tables; we apply horizontal frag-
mentation of the region table. Yet, since these tables are not needed for the retrieval experiments,
these are not further considered in paper. Terms present in the XML documents are stored in a
separate relation called the word index W as two-tuples (si , ti). Terms are considered regions with
a length of 1, but storing them separately reduces memory usage by not having to materialise the
end positions for the word index. The physical layer has been extended with the physical text
region operators shown in Table 5. Boolean predicate filters are always applied first. For further
details on this indexing scheme, we refer to [7, 17].

4.2 The Retrieval Model

The complex scoring functions defined at the logical level, fA(r, R) and f6A(r, R), implement the
about function defined in Section 2. The context region in which we perform frequency counts
is denoted by r, while the set R specifies the set of term regions. Since terms are considered
regions themselves, a term selection over the word index W gives a region set as result, i.e.,
R = σn=term(W).

We first introduce five auxiliary functions at the physical level, to compute the term frequency
- tf (r ,R), the ‘surrounding document’ term frequency - tf ′(r ,R), the collection frequency - cf (R),
the document frequency - df (R), and the length prior - lp(r). Variable λ represents the smoothing
parameter for the inclusion of background statistics, α is the combination parameter for article
weighting, and µ is the mean value for the log-normal prior.
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These auxiliary functions are implemented using two physical operators: the size operator
size(r) returns the size of a selected region r, while the count operator |R| returns the number of
regions in a region set R.

Function tf (r ,R) computes the term frequency for terms in R. The term frequency of region
set R (i.e., a set of term positions) in context region r is computed as:

tf (r ,R) =
|R on⊂ r |
size(r)

Function cf (R) computes the collection frequency of R as follows:

cf (R) =
|R|

size(Root)
,

where Root represents the entire XML collection, i.e., the region that is not contained by any
other region in the collection.

The document frequency function computes the document frequency for a term present in the
region set R as follows:2

df (R) =
|R on⊂ N|
|N |

Length prior lp(r) of region r is defined by either the standard length prior (ls) or the log-
normal length prior (logn).

Finally, function tf ′(r ,R) computes the term frequency in a surrounding document:

tf ′(r ,R) =
|R on⊂ (σn=‘article’(N ) on⊃ r)|

size(σn=‘article’(N ) on⊃ r)

The complex scoring functions defined at the logical level can now be implemented through
the combination function g, which is defined in terms of these auxiliary functions and parameters:

fA,λ,α,µ = gA,λ,α,µ(tf (r ,R), tf ′(r ,R), cf (R), df (R), lp(r))

f6A,λ,α,µ = g 6A,λ,α,µ(tf (r ,R), tf ′(r ,R), cf (R), df (R), lp(r))

We can now implement the retrieval models presented in Section 2.1 at the physical level, by
instantiating combination function g with the right auxiliary functions. So, the instantiation of
the combination function determines the actual retrieval model used. Note that other retrieval
models may require the extension of the physical layer with different auxiliary functions, e.g., to
support other frequency measures.

I changed logical into physical operators in this paragraph

Finally, the definitions of operators fI(r1, R2) and fJ(r1, R2) are based on region containment op-
erators and operators size and count. Thus, fI(r1, R2) is defined using the expression R2 on⊂ r1,
while fJ(r1, R2) is defined using R2 on⊃ r1. As an example, let the complex scoring function
fI(r1, R2) be defined as normalisation weighted by region size. Denoting the result of the appli-
cation of the containment expression by Y = R2 on⊂ r1, the scoring function fI(r1, R2) is defined
as:

fI(r1, R2) =

∑
y∈Y size(y)p2(y)∑

y∈Y size(y)
,

where p2(y) is the score value of region y ∈ Y .

2Notice however that in the article run, the document frequency is based on the article node set only
(σn=‘article’(N )).

11



4.3 Patterns for The SCAS and VCAS Tasks

4.3.1 Pattern 1

Processing pattern 1 (see Table 1) consists of two basic steps: relating node-sets xp and axp to
each other, and processing the about operator. Node sets xp and axp must have a ancestor -
descendant structural relationship. Processing is the same for the VCAS and SCAS tasks.

The pattern is processed as follows:

• Determine the correct axp node-set for ranking. On the physical level, this is done by
executing a containment join between the node sets xp and axp: axp on⊂ xp. The result of
this containment join is cxp or the set of those nodes of axp which are contained within
nodes in xp;

• Perform the about operation on the nodes in cxp (the combination of Ap, 6Ap, and N operators
on the logical level) using a combination of functions explained in the previous subsection;

• Return the ranking for the xp node-set, based on the rankings of the nodes present in cxp.
Note that it is possible that the ranking returns a ranking for multiple axp descendant nodes
for a single xp node (for example, multiple sections within an article). The experiments in
Section 5 apply varying aggregation functions (maximum, average, and weighted normalized
sum) to compute the final score for the xp node in question. This step is the physical
equivalent of the logical I operator.

4.3.2 Pattern 2

VCAS As already stated in Section 2 pattern 2 is divided into two subpatterns. Both subpat-
terns are processed as pattern 1. The two resulting node-sets need to be combined for a final
ranking. We have chosen two implementations for the combination function represented with the
N operator on the logical level: (1) taking the minimum of the (non-zero) scores, or (2) taking
the product of the scores for corresponding regions. Similarly, for the H operator we used (1) the
maximum of scores, or (2) the average of scores for corresponding regions.

SCAS For the SCAS scenario, all of the descendant nodes present in axp1 and axp2 need to
be present in the context of an xp node. In path-based terms: if the path xp does not contain
both a path axp1 and a path axp2, the path xp cannot be relevant. We filter out those xp paths,
not containing both the axp1 and axp2 paths. This additional filtering step and the choice of the
implementation of abstract operators, N (minimum or product) and H (maximum or average),
define together the difference between strict and vague scenarios.

4.3.3 Pattern 3

VCAS Pattern 3 has been transformed at the conceptual level into an instance of pattern 2.
Therefore, it is processed like pattern 2, with the only difference that the target element lies deeper
in the tree.

SCAS For the strict scenario however, pattern 3 is divided into a number of subpatterns that
have the form of pattern 1 or pattern 2. As explained in Section 2 these subpatterns produce
intermediate result node-sets that have to be structurally correlated to each other (including the
score aggregation). We can choose to perform a top-down correlation sequence, or a bottom-
up correlation sequence consisting of containment joins on these result node-set. In the current
implementation, the patterns are always processed top-down. Yet, the choice between a top-down
or bottom-up sequence is really an optimization decision, that should be made by the retrieval
system at runtime. For example, if a collection contains many paragraph elements, not contained
within article elements, the system should decide to limit the amount of unnecessary executed
about predicates by choosing a top-down approach.
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Table 6: CO experimentation runs; note that we used a length of 2516 as preferred component
length for the Rcomp−logn run, and used a fixed value of 0.15 for the model smoothing parameter
λ.

Run Scoring Retr. Nodeset MAP
RCO

art RSV1 σn=‘article’(N ) 0.0392
RCO

comp RSV1 N 0.0387
RCO

comp−logn RSV2 N 0.0374

Again, we experiment with two choices for specializing logical operator fblacktriangleleft: (1)
use the score of the target element as the result score, and (2) propagate the score of the filter
element by multiplication with the score of the target element.

5 Experiments

This section describes the experiments performed using the TIJAH XML-IR system and analyzes
the experimental results. The experiments are performed on INEX collection (version 1.4), using
the topic set of INEX 2003 (relevance assessments version 2.4). To find the best retrieval model
and to test the effectiveness of different variants of our system, we performed a number of runs for
both the content-only (CO) and the content-and-structure (CAS) topics. Note that for the CAS
topics we only include the experiments done with the strict variant (SCAS). Relevance judgements
and measures for the vague variant (VCAS) are still under development, so we cannot report upon
the effectiveness of our system for this task.

5.1 CO Task Experiments

For the CO task, we designed three original experimentation runs, using the two scoring functions
RSV1 and RSV2 described in Section 2.1. The first run (Rart) represents the baseline run of fixed
‘flat-document’ retrieval, where the retrieval unit was limited to the article level. The second run
regarded all subtrees in the collection as separate documents (Rcomp). The third run applies the
log-normal distribution to model the specificity dimension (Rcomp−logn). Experiments for INEX
2002 showed that 2516 words was the average document component length of relevant document
components (according to the strict evaluation function used in INEX 2002). Table 6 summarizes
experimental results, where MAP stands for mean average precision. The official CO-runs use the
keywords present in the keyword-element of each topic. Before executing each topic, query stop
words were removed using the SMART stop word list, and all remaining keywords were stemmed
with the Porter stemmer. Stop word removal (using the SMART stop word list) and stemming
was also performed on the indexed collection terms, as well as the removal of terms shorter than
two characters or longer than 25 characters.

Table 7 presents the results of several additional CO runs.3 First, we extracted, for each topic,
the terms occurring in the title about clauses (T ) and in the description (D) and keyword (K )
component text. We then made combinations of the T, D and K keyword sets, and used the
combinations in additional runs (TD and TK ). Second, we create CO-runs where we replaced
the log-normal element length prior (logn runs) with a standard element length prior (ls runs).
Finally, we experimented with the article weighting (aw runs). From the average precision values
in Table 7, the following observations are clear:

• large elements should not be discounted (under the current metrics of evaluation; difference
between logn and ls runs);

3The differences between the Rcomp and Rcomp−logn MAP scores in Tables 6 and 7 originate from the (different)
ordering of elements with equal score.
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Table 7: Mean average precision values for the additional CO runs. The last three columns denote
the topic part used for the run: T for title, TD for title and description terms, and TK for title
and keyword terms. We used the set N as the retrieval nodeset for all runs. For evaluation, the
strict evaluation measure (for 2002) was used.

Run Scoring T TD TK
RCO

comp RSV1 0.0341 0.0383 0.0447
RCO

comp−logn RSV2 0.0351 0.0390 0.045
RCO

comp−ls RSV3 0.0652 0.0766 0.0740
RCO

comp−logn−aw RSV6 0.0697 0.0863 0.0905
RCO

comp−ls−aw RSV7 0.1043 0.1224 0.1205

• combining element scores with their surrounding context scores appears to improve perfor-
mance significantly (aw runs);

• in spite of the noise in the description text, using the description terms improves retrieval
results (comparing columns T and TD).

We hypothesize that the difference in effectiveness observed between the logn and ls runs,
contradicting our intuition, should be sought in the current evaluation metrics, which reward
exhaustivity over specificity, and also do not handle the problem of the over-populated recall base;
refer to [16] for more details. Another explanation could be that the log-normal’s mean value of
2516 words as desired component size is not appropriate for the 2003 relevance assessments.

5.2 SCAS Task Experiments

The main goal of the experiments performed for the strict CAS retrieval task was to evaluate the
pattern approach described in this paper and to study the performance of different implementations
of the complex functions (fA, f6A, fI, and fJ) and the abstract operators (⊗ and ⊕).

For each topic, all terms occurring in the separate about function calls present in the topic title
component were first collected in a single term set together with all the keywords. Then, the about
function was executed with this term set on the set of all component in N . Processing concludes
with resolving the structural constraints expressed in the query. For scoring the components, the
scoring function RSV1 was used with the λ parameter set to 0.15.

One of the advantages of the pattern approach taken for the CAS queries is that we can
easily modify the implementation of the algebra operators that define the combination of different
subqueries within a query. Therefore, we decided to study the following combination options:

• the aggregation mechanism used to score a target element containing multiple ranked sub-
elements in pattern 1 (operator I);

• the processing of AND and OR operators in pattern 2 (operators N and H);

• the combination of the different sub-queries for pattern 3 (operator J).

The first run, RSCAS
orig , uses the minimum and the maximum to process the AND (N) and OR

(H) operators respectively. The average mechanism is used to give a score to the target element
when it has multiple scored descendants. The first about clause of Pattern 3 is treated as a filter,
without propagating the scores. The second run uses the probabilistically more intuitive product
and avg for AND and OR operators. The comparison of results obtained from these two runs is
depicted in Table 8.

Table 9 summarizes the results obtained with various scenarios for handling multiple ranked
descendants within the target element. To normalize the sum of multiple ranked descendants we
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used a weighted normalized sum as defined at the end of Section 4.2. This weighting is supposed
to punish both the short descendant elements and the long target elements. It is interesting to
note that, whatever the processing of the AND and OR operators, the run using ‘max’ outper-
forms the ‘avg’. Apparently, high scores from the language model indicate relevance more reliably
than intermediate scores. An alternative (related) explanation is that users prefer (according to
the evaluation metrics) a single, highly scored element over multiple less highly scored elements.
Observe also that the weighted normalized sum is not working as well as we expected. Seemingly,
the users do not agree in our way of penalizing document sizes. The users would prefer again
documents that contain a highly score element even if the rest of the document is long and not
so relevant, and they would not mind if the element containing the relevant information is very
small as far as it is highly scored. On the other hand, we observed in additional runs (not in
the table), that the non-normalized sum (not allowed in our probabilistic setting) gives the best
results (MAP 0.3069). Further research will include to map the modelling of this behaviour into
our model.

Finally, to study the combination of the different sub-queries for Pattern 3, we did a new run
where the first about clauses are not just treated as a filter but their scores are propagated to be
multiplied with the target element scores. We can see in Table 10 that to use the filter elements
scores helps indeed to improve the performance of the system.

5.3 Lambda Estimation

The following experiments investigate the influence of smoothing parameter λ on the effectiveness
results. Note that this estimation has not been performed to validate or invalidate a hypothesis;
we just investigate a posteriori how sensitive the system results are for the right setting, given the
collection, topicset and evaluation metric used in this study.

We performed two sets of runs. The first set consists of article retrieval with scoring functions
RSV1, RSV3, RSV4, and RSV5. The second set of runs consists of component retrieval using
the same four scoring functions. For each of the sets of runs, the λ parameter has been varied
between the values 0 and 1, and the MAP values for each value of λ are computed. The value for
λ has been incremented by 0.05 in each step. Evaluation of the runs was done with the evaluation
programs offered by the INEX initiative. The results of both sets of runs are shown in Figures 3
and 4.

The MAP values for article retrieval in Figure 3 show behavior comparable with previously
reported behavior on the Cranfield and TREC collections [13]. Also, as in the case of the Cranfield
and TREC collections, the length prior modified runs perform better than the non-length prior
modified ones (although the differences are not as large as those reported for the Cranfield and
TREC collections). The performance seems rather stable across a large interval of values for the
smoothing parameter. This phenomenon seems to be collection-independent, as the same was
reported for the Cranfield and TREC collections.

The MAP values for component retrieval, shown in Figure 4, exhibit more interesting behavior.
Of all runs, the run using document frequencies and a document component length prior performs
best, achieving a MAP of 0.09768 for λ = 0.60. In the case of component retrieval, the length-
modified runs score much better than the non-length prior modified runs. As with article retrieval,
we also see an interval where performance does not change radically.

Table 8: SCAS experimentation runs. AND and OR processing: min-max vs. product-avg.

Run N/H I MAP
RSCAS

orig min/max avg 0.2681
RSCAS

prod−avg prod/avg avg 0.2908
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Table 9: SCAS experimentation runs. Multiple descendants processing.

Run N/H I MAP
RSCAS

mm−avg min/max avg 0.2681
RSCAS

mm−max min/max max 0.2721
RSCAS

pa−avg prod/avg avg 0.2908
RSCAS

pa−max prod/avg max 0.2998
RSCAS

pa−ws prod/avg weight norm sum 0.2854

Table 10: SCAS experimentation runs. Filter scores propagation in Pattern 3.

Run N/H I J MAP
RSCAS

pa−max−np prod/avg max no propagation 0.2998
RSCAS

pa−max−p prod/avg max propagation 0.3143
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We seek an explanation for the difference in performance between runs without length priors
and those with a length prior in the fact that the language model without length prior will over-
estimate the relevance of (very) short document components that contain query terms, therefore
outranking the larger (but usually preferable) components. Again, the influence of the artificially
enlarged recall base could provide an additional reason.

5.4 Efficiency

Besides measuring the effectiveness of our retrieval system, we also measured the efficiency of
indexing and querying the collection. Table 11 shows the average topic execution times of all
(CO) created runs. For a given run, we averaged the topic execution times of the topics in that
given run (with CO runs having 36 topics and the SCAS and VCAS runs having 30 topics). All
measurements are wallclock timings, measured in seconds. The hardware used for the executions
of the runs is an AMD Opteron machine, running at 1.4GHz and having 2GB of main memory.
The indexing time is divided into two separate parts:

• the time needed for insertion of data Tinsert, measured at 176 seconds;

• the time needed for post-processing Tpostprocess, measured at 191 seconds. Post-processing
consists of determining collection frequencies, component text lengths (component lengths
disregarding markup) and indexing of topics.

Memory use of our system varied between 250MB and 1GB, where 1GB was reached when materi-
alizing large components, or large component sets (large with regard to the number of components
in the result set) for executing the language model. Moreover, memory use was increased by be-
havior of the database kernel used: the kernel loads tables completely into memory when they
are needed, even if not all parts of the table are used. This redundant memory use as a result
of loading irrelevant data can be avoided by, for example, horizontal fragmentation of the tables
as in [22]. The time needed for the logn and ls runs (when compared to the comp run) can be
explained by extra join-operations against parts of the index, needed for retrieving the component
text lengths and calculation of the logarithms. Also, the aw runs take more execution time as a
result of the extra containment joins needed to resolve the specified structural constraints. Each of
the SCAS runs discussed in the previous subsection took approximately 50 seconds (wallclocktime)
to execute.
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Table 11: Average topic execution times for all runs, in seconds (wallclock time). Note that the
first row is the original article run, performed with keywords only (the K column). The execution
times of our official INEX 2003 runs are displayed in the first three rows (in boldface). The other
timings are those of the additional, unofficial runs.

Run K TD TK
RCO

art 6.75 - -
RCO

comp 44.08 68.19 53.22
RCO

comp−logn 45.13 69.58 54.47
RCO

comp−ls 45.25 69.69 54.47
RCO

comp−logn−aw 47.16 72.22 56.80
RCO

comp−ls−aw 47.25 74.44 57

The time needed for indexing could be further reduced. First, for the sake of simplicity, the
system indexes the full XPath (in string format) for each component in the collection. This full
XPath indexing is redundant and can be replaced by a facility to resolve the component XPaths
when presenting results to the user, or by a more compact index structure. Second, we are
looking into possibilities for encoding other parts of the index into more compact structures, e.g.,
bitvectors.

5.5 Discussion

The main goal of the experiments has been to test the ‘proof of concept’ of our retrieval system, and
especially the use of the database approach; using a layered design in a retrieval system. The main
advantages of such a layered approach mentioned in Section 1 are data abstraction and content
abstraction. We consider our proof of concept partially successful. Defining and implementing new
experimental scenarios, including the context weighted version of the retrieval model, has proved
straightforward.

However, after studying this paper, the skeptical reader of this paper might wonder about the
goal and benefits of the logical layer, since the mappings from conceptual via logical to physical
layers may seem rather one-on-one. And, the data models used on the logical and physical levels
do not differ that much, so this mapping might as well be performed from conceptual to physical
layer without intermediate step.

For our INEX 2002 and 2003 experiments, this has been somewhat true; but, of course, these
experiments span only the retrieval of structured XML documents, from a rather homogeneous
collection. The notion of a structured document also allows for other types of retrieval to be
performed with the TIJAH system. We think that handling heterogeneous collections, even of
different media types, would emphasize more the role of the logical layer in query processing. For
example, the generally accepted structure of a video divides a video stream into scenes, which
are composed of shots, and the shots themselves are composed of frames. Such video documents
possess document structure (albeit simple), and, user annotations (MPEG-7) would introduce an
even more meaningful structure for the set of videos.

6 Conclusions and Future Work

Our experience with the TIJAH system at the INEX evaluations can be considered a successful
exercise in applying current and state of the art information retrieval technology to a database
consisting of structured documents. We described our system architecture, aimed at simplifying
the implementation of advanced retrieval models for the combination of structure and content in
XML documents.

We expect to take further advantage of the obtained flexibility in our future research. For,
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the current approach to retrieval has only used a limited proportion of the wealth of structural
information present in XML documents. Also, we aim to improve the efficiency of the system,
both memory and CPU wise, by applying horizontal fragmentation and encoding of data into more
compact structures. Longer term research plans include handling a wider variety of structured
documents. More specifically, we will deploy the TIJAH system in our ongoing video retrieval
research.
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