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1 Introduction

This paper describes our participation to the TREC
HARD track (High Accuracy Retrieval of Docu-
ments) and the TREC Enterprise track. The main
goal of our HARD participation is the development
and evaluation of so-called query profiles: Short
summaries of the retrieved results that enable the
user to perform more focused search, for instance
by zooming in on a particular time period. The
main goal of our Enterprise track participation is
to investigate the potential of the structural in-
formation for this type of retrieval task. In par-
ticular, we study the use of the thread informa-
tion and the subject and header fields of the email
documents. As a secondary and long standing re-
search goal, we aim at developing an information
retrieval framework that supports many diverse re-
trieval applications by means of one simple yet
powerful query language (similar to SQL or rela-
tional algebra) that hides the implementation de-
tails of retrieval approaches from the application
developer, while still giving the application devel-
oper control over the ranking process. Both the
HARD system and the Enterprise system (as well
as our TRECVID video retrieval system [14]) are
based on MonetDB, an open source database sys-
tem developed at CWI [1].

The paper is organised as follows. First, we dis-
cusses our participation in the HARD track. We
define query profiles and discuss the way we gener-
ate them in Section 2. Section 3 describes the clar-
ification forms used and Section 4 explains how we
refine the queries and rank the results. We end this

part by analysing our experimental results in Sec-
tion 5 and giving some conclusions for this track in
Section 6. The second part of the paper discusses
our participation in the enterprise track. We start
by describing the system and experimental setup
in Section 7. Section 8 discusses the approaches
taken for each of the subtasks and Section 9 analy-
ses the results. We end by giving some conclusions
and future work for this track in Section 10. The
final part of the paper describes our future plans
for building a so-called parameterised search engine
within the Dutch National project MultimediaN.

HARD TRACK EXPERIMENTS

The following part reports about our HARD track
experiments. It shows how query profiles can be
employed for clarification and describes the evalu-
ation of the system within the HARD track setting.

In an interactive information retrieval session,
which is the underlying concept of the HARD track,
the role of the system is to detect query ambiguity
and to ask the user for clarification in a way, she/he
feels able to answer. Following an idea of Diaz
and Jones [5] to predict the precision of queries by
using their temporal profiles, we analyzed tempo-
ral as well as topical profiles with respect to their
application in clarification forms. We hope to en-
able the user to give better feedback to the system
by showing him/her this summarized information
about the expected query outcome.
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2 Query Profiles

Query profiles play a central role within our HARD
track experiments. Therefore, we start this paper
by a short general definition of the term and show
later in more detail how special types of query pro-
files can be computed and analyzed.

Definition A query profile shows the distribution
of documents, the system regards as relevant to the
given query, with respect to a certain document
property. E.g., a temporal query profile shows the
distribution of relevant documents along the time
dimension, a topical profile along the dimension of
predefined topics the answers belong to.

The set of documents, the system regards as rel-
evant to a given query, is determined by the top
X documents from the ranked answer list. Notice,
that this set can differ by far from the set of doc-
uments relevant to the user. By summarizing and
visualizing information about the expected query
results in profiles the user should be able to realize
this difference him-/herself and to refine the query.

Expectations on the work with profiles:

• Query profiles give an helpful and easy to un-
derstand preview over the expected results.

• The user can detect ambiguity in the query
and resolve it.

• Combining profiles with interactive means to
express preferences or dislikes can be a pow-
erful tool for query refinement.

Whereas the general ideas stay the same for all
kinds of query profiles, there are several domain
specific issues to consider. We will thus take a
closer look on generating temporal and topical pro-
files, the two types used in our HARD track exper-
iments.

2.1 Generating Temporal Profiles

Having a date-tagged corpus, a basic temporal pro-
file for a given query is simple to compute. We
treat the 100 top ranked documents from the base-
line run as the set of relevant answers R and ag-
gregate a histogram with monthly time steps:

frq(Ri) = {|Dj | |month(Dj) = i}.

The decision for the granularity of one month is
based on the overall time span of the corpus and
the timeliness of news events. Other granularities,
however, would be considerable as well.
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Figure 1: Temporal Profile of Topic 363: Trans-
portation Tunnel Disasters

As a next step, we performed a time normal-
ization on the profile. Knowing that the corpus
articles are not evenly distributed over the total
time span, the time profile should display the rel-
ative monthly frequency of articles relevant to the
given topic rather than absolute numbers. There-
fore, the frequency of each monthly partition Ri is
divided by the total number of corpus articles Ci

originating from month i. The average frequency
frq(R) is used here as a constant factor to avoid
exceptional small numbers:

frq∗(Ri) = frq(Ri)/frq(Ci) ∗ frq(R).

Furthermore, we performed moving average
smoothing on the histogram, a technique used for
trend analysis on time series data. It replaces the
monthly frequencies of the profile by the average
frequencies of a small time window around the par-
ticular month. We used here a window size of 3
months:

frq∗∗(Ri) =
frq∗(Ri−1) + frq∗(Ri) + frq∗(Ri+1)

3
.

There are two reasons for using such a smoothing
technique. First, the time-line the search topic is
discussed in the news will often overlap with our
casual monthly partitioning. Second, although we
want to spot peaks in the profile, we are not in-
terested in identifying a high number of splintered
bursts. If two smaller peaks are lying in a near
timely neighborhood they should be recognized as
one. The graph in Fig. 1 shows an example of a
resulting temporal profile.

Finally, we want to determine the number,
bounds, and the importance of peaks in the tem-
poral profile. Diaz and Jones [5] tried several tech-
niques for this purpose and decided to employ the
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so called burst model [7]. However, starting with
the described preprocessing of the temporal profile
a simple threshold driven approach seemed suffi-
cient in our case. In order to explain the method
one should imagine two horizontal lines dividing
the temporal profiles into 3 areas (see Fig. 1). We
will call the upper line peak threshold and the
lower one norm threshold. It remains a matter
of parameterization where to set those lines ex-
actly. For our experiments, we set the thresholds
depending on the average frequency of the profile
frq∗∗(R):

norm threshold = 1.2 ∗ frq∗∗(R),

peak threshold = 1.5 ∗ frq∗∗(R).

We define then a peak as any continuous time
span with frequencies above the norm threshold, if
there is at least one frequency value inside above
the peak threshold. On the other hand, between
two different peaks lies always at least one fre-
quency value below the norm threshold, otherwise
the two or more bursts are counted as one. Follow-
ing this definition, the bounds of existing peaks in
the profile can easily be determined.

When we also want to compute a measure for the
importance of the found peaks P , the correspond-
ing frequency values of the temporal profile can
simply be summed up. A further division by the
average of such frequency sums frq(P ) leads to a
value for peak intensity better comparable among
different temporal profiles:

frq(Pj) =
∑
i∈Pj

frq∗∗(Ri),

intensity(Pj) = frq(Pj)/frq(P ).

2.2 Generating Topical Profiles

For topic classification we need to build abstract
(language-) models for all different concepts, the
classification should take into account. In order to
save work and to keep the experiments comparable,
we used the models built for last year’s HARD ex-
periments. The queries then distinguished 12 dif-
ferent concepts similar to the main sections of com-
mon newspapers (like politics, business, sports...).
A further advantage using the old models is that
they are based on a different corpus and thus can’t
be illegally over-fitted. A more detailed description
about the construction of these language models
can be found in our last year’s TREC paper [10].

The required text classification for computing a
topical profile differs slightly from the typical cate-
gorization task (described in [11]). We do not need
to assign binary labels whether a document belongs
to a certain category or not. A similarity mea-
sure showing to which extend an article belongs to
a given category is already sufficient. Hence, the
task falls back to the known domain of ranking a
set of documents given a query. In fact, an ab-
stract language model describing a topical concept
is nothing but an exceptional long query. We used
in the experiments the NLLR measure (described
in a later section) which is also applied to compute
a score for the initial query. Only the smoothing
factor λ is set smaller in this case. Firstly, because
the exceptional query length makes smoothing less
important, and secondly, to increase differences be-
tween the models.

In order to speed up the computation of topical
profiles as well as the later ranking procedure the
score computation is performed offline. For each
classifier in the set of topical concepts a score vec-
tor is maintained, holding the individual scores for
all documents within the collection.

After the classification task is done, topical pro-
files can be computed in the following way. Similar
to temporal profiles explained previously, the set R
of the 100 top ranked documents given the query
is determined. The score for a specific topic cate-
gory Ti is then defined by the sum of all document
scores in R for this category. The intensity value,
as introduced in the last section, is computed ac-
cordingly:

score(Ti) =
∑
D∈R

NLLR(Ti|D),

intensity(Ti) = score(Ti)/score(T )

An example topical profile is displayed in Fig. 2.

3 Clarification Forms

Compared to the profiles shown in the last section
(Fig. 1 and Fig. 2) a user does not need to see
the whole spectrum of the profile. Instead it seems
sufficient to cut out the most relevant part of it,
which means the highest temporal or topical peaks.
For the experiments, we just displayed the 5 top
ranked topics, but all identified temporal peaks.
In practice their number never exceeds 4.

Besides providing a preview on the query results,
our clarification forms allow to refine the query. In
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Figure 3: Clarification Form of Topic 363: Transportation Tunnel Disasters
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Figure 2: Subject Profile of Topic 363: Transporta-
tion Tunnel Disasters

the topical profile the user can state preferences
and dislikes, which will influence the final result
list accordingly. Similarly, the time profiles allow
to express temporal restrictions for the search to
any combination of peak ranges.

3.1 Automatic Preselection

We also looked, whether it is possible to make an
automatic suggestion of an appropriate selection in
the profiles. Obviously, the most high ranked top-
ics or temporal peaks are good candidates, espe-

cially if they distinctively stand off from the lower
ranked ones. The intensity measure defined in the
last section explicitly addresses these characteris-
tics. Using an intensity threshold, we can preselect
all topics and temporal peaks above. In the exper-
iments an intensity threshold of 1.2 was used for
the topical profiles, respectively 1.5 for the tem-
poral profiles. These values have been shown high
enough to assure the selection of only distinctive
peaks of the profile. An example clarification form
with preselected items is shown in Fig. 3.

4 Query Refinement and Ranking

4.1 Translation to NEXI Queries

Having a parameterized search system as a high
level objective in the Lowlands team, that allows
to be adapted to all kind of search scenarios, we
need to express our queries in a common language.
We found the NEXI query language used in the field
of structured retrieval a suitable and already well
known candidate. Hence, the first task here will
be to express the complex user refined HARD track
queries in the NEXI syntax (A definition of NEXI
can be found in [12]). It provides along the way a
comprehensible overview of the ranking procedure.

Baseline queries searching for documents (with
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tag-name DOC) that are relevant to the query terms
t1...tn are expressed in NEXI in the following way:
//DOC[about(., t1...tn)].

The about usually triggers a scoring process ac-
cording to a set of query terms, but the basic ex-
pression can be extended in a syntax-conform way
to initiate a scoring with respect to a predefined
language model: about(., model(sports)). Simi-
larly, the preceding minus sign for terms can be
translated accordingly to language models in or-
der to express the dislike of such a model: about(.,

-model(business)). Furthermore, we can combine
scores with the and operator. A user refined query
for topic 363 might look now in the following way:

//DOC[about(., Transport Tunnel Disasters)

and about(.,model(events) -model(sports))]

The last needed query language construct is a
time restriction. In contrast to the soft preference
expressed by score combination above, the time fil-
ter should be restrictive, either letting a document
pass or not. Such a filter is simply set by further
predicates on the document nodes exploiting the
XML-structure of the collection. Here written in a
simplified syntax:

//DOC[about(., ...)][//date > min

and //date < max]

4.2 Retrieval Model and Score Combination

Now all HARD track queries can be expressed in the
NEXI syntax, however, we have neither specified
the concrete employed retrieval model of the about

operator nor the used score combination technique.
The abstraction of the NEXI syntax still allows to
change those parts.

For the experiments, we continued following the
language modeling approach from last year. In
particular, we choose again the NLLR, the normal-
ized logarithmic likelihood ratio [8], as a score func-
tion: ∑

t∈Q

P (t|Q) ∗ log

(
(1− λ)P (t|D) + λP (t|C)

λP (t|C)

)
= NLLR(Q|D).

The NLLR is able to compare query terms and
documents as well as entire language models. Due
to the normalization it produces comparable scores
independent of the size of the query. The factor λ
determines the degree of smoothing with the back-
ground collection model. Since smoothing plays an
important role for short queries, whereas it dilutes

the score differences for large-scale query language
models, we decreased λ from 0.85 for queries to 0.5
for topic models.

If an about function includes several language
models Mi, their logarithmic scores are simply
added, respectively subtracted for disliked models
with preceding minus. This allows to make effi-
ciently use of the precomputed document scores
for topic language models:

score(D) =
∑
Mi

±NLLR(Mi|D).

Finally, the and operator takes on a special posi-
tion. It is only used here for combining the initial
baseline query with the scores from the topic mod-
els. In this special case we have to ensure that
the scores on both sides deliver “compatible” val-
ues or even more to guarantee the superiority of
the initial query in the final result. A minimum-
maximum normalization solves such a task (among
others described in [3]). It shifts in a first step the
scores on both sides to set the minimum to zero
and stretches the ranges of scores to an equal level
by comparing the maxima on both sides. In our
case, we even stretch the score range of the base-
line query to double the size of the other part to
stress its dominance in the final ranking.

5 Experimental Results

We submitted this year two baseline runs,
TWENbase1 and TWENbase2. Whereas the first uses
the title keywords only, the second makes use of
title and description of the topic. Both runs, thus,
only differ with respect to query length. Further-
more, we submitted in total six final runs, three
belonging to each of the two baseline runs. The
TWENuser runs evaluate all information given by
the user in the clarification form. In contrast,
the TWENblind runs take in a blind-feedback man-
ner only account of the system’s preselections ex-
plained above. Finally, the TWENdiff runs analyze
the difference between the two and only utilize the
changes the user made over the preselections.

All original HARD submissions this year suf-
fer unfortunately from a hard-to-spot system bug.
Our system produced still useful output, however
less accurately than possible. For this reason we
rerun all experiments with the inevitable inconsis-
tency between the new rankings and the user feed-
back based on the old clarification forms. In order
to keep the results comparable, we also used the
old system preferences for the TWENblind runs.
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A closer look at the set of the 50 search topics
revealed, that they haven’t been distinctive with
respect to their temporal profile. In fact, there was
almost no case where the user wanted to restrict
the query to a certain time span. We restricted our
analysis, therefore, to the improvements by topical
query refinement and ignored all temporal restric-
tions.

Table 1 presents an overview on the main evalu-
ation measures computed for all 8 runs. At a first
glance it is visible, that the topic refined queries
show a considerable improvement over the base-
line runs. The precision gain is most visible at
the P10 measures. If we compare the results with
respect to the initial query length, we see the title-
and-description runs always ahead of the title-only,
but the difference becomes smaller for the refined
queries. Hence, the refinement strategy helps the
most in the case of short queries, which are typical
for common search engine users.
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Figure 4: Precision-recall graph for all runs based
on title-only queries

The precision recall graph in Fig. 4 confirms the
observation made with the P10 values. The preci-
sion gain stays the highest at the top of the ranked
list. The user refined query results soon converge
to the baseline. Surprisingly the blind feedback
variant stays even on top of all other runs.

A more detailed view on the results of all single
search topics is presented in Fig. 5. The queries
reaching high MAP values already in the baseline
run, apparently gain the most from query refine-
ment. The relation between the improvement and
the quality of the initial query result seems almost
proportional. This might give an explanation for
the good results of the blind feedback run, which
depends purely on the quality of the initial query.
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Figure 5: MAP improvements on single topics

6 Conclusions and Outlook

The results show promising improvements for all
runs that make use of query profiles. However, our
so called blind feedback run performed at least as
good as the one with user interaction. Therefore,
we must conclude that the main information the
query profile shows currently can already be ex-
tracted and used by the machine itself. The clarifi-
cation forms have been less useful so far to dissolve
query ambiguity by user interaction. However, we
think it is too early for a general judgment on the
usability of query profiles for clarification. Firstly,
our clarification forms suffered to an unknown ex-
tend from the reported system bug. Secondly, we
would expect better results by a finer grained ”top-
ical resolution” combined maybe with a technically
more elaborated classification process.

Furthermore, we need to examine search im-
provement by query profiles on other dimensions.
The temporal profiles remained untested by the
current HARD track query set, but also geograph-
ical or genre profiles - in order to name just two
possible other parameters - might enable similar
improvements as the topical query refinement.

ENTERPRISE TRACK
EXPERIMENTS

In this part, we report about the experiments car-
ried out for the Enterprise track. We explain the
approaches taken and the results obtained for each
of the subtasks of the track: known-item search,
discussion search, and expert search. The main
goal of our experiments is to investigate the po-
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base1 user1 blind1 diff1 base2 user2 blind2 diff2
MAP 0.1511 0.1808 0.1844 0.1686 0.1809 0.1985 0.2049 0.1927
R-prec 0.2142 0.2387 0.2479 0.2295 0.2447 0.2557 0.2638 0.2512
P10 0.2860 0.3560 0.3600 0.3100 0.3760 0.4260 0.4220 0.3880

Table 1: Result overview: title-only queries (base1) vs. title-and-description (base2)

tential of the structural information for these type
of retrieval tasks. In particular, we study the use of
the thread information and the subject and header
fields of the email documents.

7 System and Experimental Setup

As mentioned in the introduction, our long stand-
ing research goal is to develop an information re-
trieval framework that supports diverse retrieval
scenarios. An example of the need of such a system
can be seen already within the enterprise track.
In our case, the approaches taken for each of the
sub-tasks required a different document manipula-
tion and retrieval approach. Instead of implement-
ing the specific approach for each of the sub-tasks,
a parameterised search engine would provide an
automatic implementation and processing of these
approaches. Unfortunately, for this year tasks, we
still had to make use of two independent systems.
MonetDB/XQuery [2], an XQuery implementation
build on top of the MonetDB database system [1],
was used for structure manipulation when prepar-
ing the collection. Tijah XML-IR [9], a content
oriented XML retrieval system build on top of
the same relational database system, was used for
ranked retrieval. Tijah provides implementations
of different retrieval models and supports struc-
tural queries expressed in the NEXI query lan-
guage [13]. A tighter integration of the two XML
processing systems is planned for future work.

7.1 Collection Pre-processing

For all our experiments we used only the lists part
of the W3C corpus. However, to be able to study
the structural aspects of the collection with the
Tijah system, we manipulated the collection in the
following way:

• Explicitly include the thread information by
creating a thread field and clustering the mails
by thread.

• Convert the attribute fields into text fields to
be able to use the ranking facilities provided

by the Tijah system.

7.1.1 Thread Detection

A thread is the sequence of messages posted to a
mailing list or newsgroup dealing with the same
topic. Messages in such a thread typically refer to
a previous email and sometimes this information
is recorded in some of the email fields. However,
this is not always the case and that is when thread
detection becomes a difficult problem.

To cluster the emails from the collection by
thread, we used the thread information contained
in the all-in-reply-to list provided by William Web-
ber1. He uses different fields from the marked-up
HTML and from the mail headers to identify child-
parent relationships. In this case, child is a mail
that refers to another mail (parent).

We created an algorithm to cluster all the mails
that belong to the same thread. The algorithm
starts by creating a thread for each mail that does
not reply to any other (named root) and recur-
sively, adds to that thread the mails that refer to
this one or to any of the mails in that thread, a
so-called top-down processing approach.

However, the child-parent information is not ex-
act nor complete. Due to the existence of cycles
in the threads (such as mail A refers to B, mail B
refers to C and mail C refers to A), not all the mails
could be classified using this algorithm. The re-
maining 63 mails, contained in 7 different threads,
were classified manually.

Once all the mails were clustered, we created
an XML document with the thread index using
the structure shown in Figure 6. The mails from
the collection not belonging to any of the identi-
fied threads were added to the index as single-mail
threads.

7.1.2 Structure Manipulation

Using the information from the created thread in-
dex and from the cleaned collection made available
1Available from http://www.cs.mu.oz.au/~wew/

w3c-lists-threads-wew.gz
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<THREADS>
<THREAD THREADID="1">

<DOCID>lists-000-0065591</DOCID>
<DOCID>lists-000-0329499</DOCID>

</THREAD>
<THREAD THREADID="2">

....
</THREADS>

Figure 6: Structure of the threads index document:
threads.xml

by Daqing He2, we created a new XML file with the
following modifications:

• Emails are clustered by thread and the threads
are identified.

• Emails not belonging to any thread are con-
sidered as a thread themselves.

• Attribute values from the header field consid-
ered important for retrieval are converted into
text fields. The reason for that is that, so far,
the Tijah system can only use attribute val-
ues as strict predicate constraints. To make
use of them for similarity ranking, they have
to be contained in a text field.

• Fields considered not important for retrieval
are removed from the collection. We decided
to remove the isoreceived and isosent informa-
tion.

Manipulation of XML structure is simplified by
using XQuery. For example, the creation of our
purpose-specific collection with the above four re-
quirements, can be done using the single XQuery
query shown in Figure 7.

The structure of the resulting modified collection
is shown in Figure 8.

8 Approaches and Retrieval Model

Tijah is based on a scored region algebra approach.
Each element in an XML tree naturally represents
a region in the document. The scored region alge-
bra provides functionality for scoring these regions
(based on a specified retrieval model), and for com-
bining scored regions in a principled manner. Ti-
jah takes NEXI queries and produces a ranked list

2Available from http://www.sis.pitt.edu/~daqing/

w3c-cleaned.html; this cleaned corpus is in turn based
on Yejun Wu’s parsed collection, which is available
at http://tides.umiacs.umd.edu/webtrec/trecent/

parsed_w3c_corpus.html.

for $t in doc("threads.xml")//THREAD
return (
<THREAD><ID>{$t/@THREADID}</ID>
{for $m in $t/DOCID
for $d in doc("trecent.xml")/DOCS/DOC
where $d/DOCNO/@VALUE=$m
return(

<DOC>
{$d/DOCNO}
<HEADER>

<RECEIVED>{data($d/RECEIVED/@VALUE)}</RECEIVED>
<SENT>{data($d/SENT/@VALUE)}</SENT>
<NAME>{data($d/NAME/@VALUE)}</NAME>
<EMAIL>{data($d/EMAIL/@VALUE)}</EMAIL>
<SUBJECT>{data($d/SUBJECT/@VALUE)}</SUBJECT>
<TO>{data($d/TO/@VALUE)}</TO>
<CC>{data($d/CC/@VALUE)}</CC>

</HEADER>
{$d/TEXT}
</DOC>)}

</THREAD>)

Figure 7: XQuery query for processing the header
and thread information

of XML elements. Consider the following example
query:

//THREAD[about(.,X)]//DOC[about(.//SUBJECT,Y)

or about(.//TEXT,Y)]

This is expected to return <DOC> elements en-
closed in <THREAD> elements about X, where the
<DOC> element should either have a <SUBJECT> or a
<TEXT> about Y. The actual implementation of the
assigning and combining scores is flexible in Tijah
and can be defined at a relatively high level. Scores
are assigned to regions for each about() clause en-
countered in a query. Score combination occurs
when results from multiple about() clauses have to
be merged. For example, when an AND or OR oper-
ator is used, or when constraints are specified at
different levels of the document hierarchy (like the
combination of <THREAD> and <DOC> elements in
the given example). For assigning scores an appli-
cation developer can choose from a variety of infor-
mation retrieval models (e.g., Vector space model,
language models), for combining scores there is a
choice of different aggregation functions.

For the Enterprise track we study the effect of
structural information and fix our choices for re-
trieval model and score combination functions. We
use a standard language modelling approach. This
means the about() clause is implemented as a sim-
ple interpolation of foreground (element) and back-
ground (collection) probabilities:∑

t∈Q

P (t|Q) ∗ log ((1 − λ)P (t|D) + λP (t|C)) , (1)
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<COLLECTION>
<THREAD>

<ID THREADID="1"/>
<DOC>

<DOCNO VALUE="lists-000-12345"/>
<HEADER>

<RECEIVED> </RECEIVED>
<SENT> </SENT>
<NAME> </NAME>
<EMAIL> </EMAIL>
<SUBJECT> </SUBJECT>
<TO> </TO>
<CC> </CC>

</HEADER>
<TEXT></TEXT>

</DOC>
<DOC>
...

</THREAD>
<THREAD>
...

</COLLECTION>

Figure 8: Structure of the email collection after pre-
processing.

where D, the document, stands for the element
we want to score. For AND and OR operators we
used product and sum functions respectively and
for combining scores from multiple levels in the
XML tree, we used the product of the scores at the
different levels. With all these parameters fixed, we
can study the effects of using structural informa-
tion. Structural constraints can easily be expressed
in NEXI queries.

8.1 Known-item search

The known-item search tasks simulate a user trying
to find an already seen email. Systems have to use
the terms provided by the user to locate the specific
mail within the mail archive. The kind of informa-
tion a user remembers about the mail might vary
considerably. Typically, a user remembers some
terms contained in the mail or the main topic of it,
but sometimes he or she might also recall the per-
son that sent the mail or the date it was sent. For
this type of search task, we believe that the struc-
tural information of the mails, where information
such as date, subject or sender is recorded, is an
important factor to take into consideration when
searching. This information, contained typically in
the header field, can be used to, e.g., redefine the
content based ranked list. This year at TREC, we
study the effects of using the subject field and the
complete header field information in combination
with the text based scores.

The different runs we submitted for this task are
shown in Table 2.

8.2 Discussion search

The discussion search task simulates a user trying
to find different arguments about a topic. He or
she wants to find pros and cons about some topic
discussed in the mailing list. This type of infor-
mation is very related to the thread information
because a discussion about a topic will typically
consist of mails referring to each other and just
adding some new opinion on the matter. There-
fore, for this task, we investigate what is the effect
of using the information that a mail belongs to a
certain thread. In particular, for a given query,
we multiply the mail scores with the score of the
thread they belong to.

We submitted for this task the two types of runs
shown in Table 3.

8.3 Expert search

The expert search task simulates a user trying to
find who to contact with questions about a given
topic. The task is to return a ranked list of persons
rather than a ranked list of documents or emails.

We only experimented with a very basic ap-
proach to expert finding, where we concentrated
on the mailing lists part of the collection. For each
of the persons in the list of candidates, we used a
simple XQuery query to produce a person specific
document consisting of all the emails for which the
candidates email address was mentioned either in
the email field of the pre-processed corpus, or in
the name field. This roughly corresponds to con-
structing a corpus of all the mails sent by a given
candidate.

From each of the person-documents, we esti-
mated a language model and used this model as
the person profile3. The personal profiles are easily
extensible with information from other parts of the
W3C corpus. For example, information from per-
sonal homepages in the www part could be added.
Comparing the baseline, email-based profiles, to
more extensive person profiles is planned as future
work.

The only run we submitted for this task is based
on simple queries against the constructed collection
of person profiles:

//Person[about(.,X)]

3This is similar to the subject profiles used in the hard
track, cf. Section 2.2.
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Run Query type Combination
LMplaintext //DOC[about(.,X)] –
LMsubjectOR //DOC[about(.//SUBJECT, X) OR about(.//TEXT, X)] sum
LMsubjectAND //DOC[about(.//SUBJECT, X) AND about(.//TEXT, X)] product
LMheaderOR //DOC[about(.//HEADER, X) OR about(.//TEXT, X)] sum
LMheaderAND //DOC[about(.//HEADER, X) AND about(.//TEXT, X)] product

Table 2: Known-item runs

Run Query type λ
baseLMlam05 //DOC[about(.,X)] 0.5
baseLMlam08 //DOC[about(., X)] 0.8
LMMlam05Thr //THREAD[about(., X)]//DOC[about(., X)] 0.5
LMlam08Thr //THREAD[about(., X)]//DOC[about(., X)] 0.8

Table 3: Discussion search runs

9 Experimental Results

This section reports about the results from the
three tasks in the Enterprise track. We used the
same collection for all the experiments. That is,
the original collection manipulated as described in
Subsection 7.1 and a further tokenization using a
stop word list and the Porter stemmer.4

9.1 Known-item search

Table 4 shows an overview of the evaluation scores
for the five submitted runs described in Table 2.

If we look at the average reciprocal rank scores,
we can see that there are not big differences be-
tween the runs. However, the combination of the
subject and header information with the OR oper-
ator leads to better precision in the top 10, which
might be useful for this type of task. Notice also
that the use of the header information helps to find
documents that other runs do not find. Further ex-
periments are needed to quantise the importance
of this type of information. The investigation of
different implementations of the AND and OR op-
erators is also an object of further study, as is the
application of different weights to the structural
fields.

9.2 Discussion search

Table 5 shows an overview of the evaluation scores
for the four submitted runs described in Table 3.

4The numbers in this section differ from what is reported in
the official result tables, since we re-ran our experiments
after a bug-fix.

The use of thread information helps in the dis-
cussion search task. Initial precision may drop a
bit, but for this task, that measure does not seem
to be the most important one; when one is looking
for pros and cons in a discussion, just a few argu-
ments is usually not enough. In fact, the whole
line of argument is important. Like in traditional
text retrieval, the exact choice of lambda does not
seem too important.

9.3 Expert search

For the expert search task we only tested a baseline
run, based on the emails sent by the candidate ex-
perts. The MAP of this run, with λ = 0.8 is 0.1255
(lower values of λ give slightly worse results), this
is around the median of all runs submitted for the
expert task.

A study of the person-documents from which the
profiles are created, already indicates that not all
profiles can be very accurate, since for many per-
sons few or no emails are found in the collection
(either because those people did not contribute to
the mailing lists, or because we failed to recognise
their emails). The submitted email-only run is in-
tended as a baseline for further research into using
more extensive user profiles based on information
from the whole collection. We have good hope that
incorporating additional information in the candi-
date expert profiles will improve the results.

10 Enterprise Track Conclusions

We reported our approaches and experiments for
the enterprise track. We investigated the effects
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LMplaintext LMsubjectOR LMsubjectAND LMheaderOR LMheaderAND
Avg. Reciprocal Rank 0.513 0.530 0.517 0.518 0.532
Found at position 1 52 51 51 49 53
Found in top 10 88 (70.4%) 97 (77.6%) 91 (72.8%) 96 (76.8%) 91 (72.8%)
Not found 15 (12.0%) 17 (13.6%) 17 (13.6%) 13 (10.4%) 14 (11.2%)

Table 4: Result overview: known-item search runs

baseLMlam05 baseLMlam08 LMMlam05Thr LMlam08Thr
MAP 0.3055 0.3040 0.3230 0.3273
R-prec 0.3389 0.3415 0.3557 0.3654
P10 0.4746 0.4814 0.4525 0.4610

Table 5: Result overview: discussion search runs

of using structural information for the different re-
trieval tasks. We showed that the thread infor-
mation is an important factor when searching for
pros and cos in a mailing list and that the use of
the header and subject information can improve
the effectiveness of the systems in different ways.

A PARAMETERISED SEARCH
ENGINE

In past TREC evaluations, we have used Mon-
etDB [4] as well as standard information retrieval
software like the TNO VSM engine [6] and Lemur
[10] to develop new applications of information re-
trieval technology. For these TREC participations,
it was often necessary to re-implement parts of the
existing system, such as reimplementing APIs, in-
troducing new APIs, and sometimes introducing
new indexing and storage structures. Of course,
the development of research prototypes is a tedious
and time-consuming job, but in our experience, de-
ploying information retrieval software is a time-
consuming job in any non-standard environment
or application.

When deploying an information retrieval system,
it is the application developer’s job to translate the
user query (usually just some keywords), to oper-
ations on inverted files and ranking operations on
the results. This is easy when the application en-
visaged can be handled by some standard software
components. However, standard solution are of-
ten not good enough. General purpose retrieval
components, such as general purpose web search
engines, do not provide sufficient functionality in
many scenarios. For some time now, companies
like Google have started to develop special purpose
search solutions like Froogle (searching products)

and Google Scholar (searching scientific articles).
Today, the development of such specialised applica-
tions is the job of information retrieval specialists,
but in the near future however, any software devel-
oper should be able to develop applications like this
in pretty much the same way as he/she would cur-
rently develop office automation applications using
relational database management systems: design a
database schema; come up with SQL queries; make
a nice user interface; done! We call these search
engines of the future parameterised search engines.
As future work, we will explore the possibilities for
developing a parameterised search engine: a search
engine providing a high-level query language that
supports many diverse search applications, as well
as providing flexible ranking of search results. This
years’ TREC and TRECVID experiments are a first
step towards that goal.
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